首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma sheath covering hypersonic vehicles has a significant effect on the propagation of electromagnetic waves. Based on the calculation of the flow field of a conical cylindrical, this work studies the propagation of electromagnetic waves in plasma sheath at L-band and Ku-band, and discusses the propagation characteristics in the head, side and tail of the sheath. The dielectric properties of plasma sheath are related to flight speed and altitude. A flight condition corresponds to a unique distribution of dielectric properties. For the conical cylindrical, the results show that flight speed is generally negatively correlated with the transmissivity of the plasma sheath. The reflection characteristics of electromagnetic waves at the L-band and Ku-band when obliquely incident to the plasma sheath show a downward trend. When the frequency is increased to Ku-band, the propagation characteristics of electromagnetic waves in the plasma sheath are related to the position of the sheath.  相似文献   

2.
The randomness of turbulent reentry plasma sheaths can affect the propagation and scattering properties of electromagnetic waves.This paper developed algorithms to estimate the influences.With the algorithms and typical reentry data,influences of GPS frequency and Ka frequency are studied respectively.Results show that,in terms of wave scattering,the scattering loss caused by the randomness of the turbulent plasma sheath increases with the increase of the ensemble average electron density,ensemble average collision frequency,electron density fluctuation and turbulence integral scale respectively.Also the scattering loss is much smaller than the dielectric loss.The scattering loss of Ka frequency is much less than that of the GPS frequency.In terms of wave propagation,the randomness arouses the fluctuations of amplitude and phase of waves.The fluctuations change with altitudes that when the altitude is below 30 km,fluctuations increase with altitude increasing,and when the altitude is above 30 km,fluctuations decrease with altitude increasing.The fluctuations of GPS frequency are strong enough to affect the tracking,telemetry,and command at appropriate conditions,while the fluctuations of Ka frequency are much more feeble.This suggests that the Ka frequency suffers less influences of the randomness of a turbulent plasma sheath.  相似文献   

3.
《等离子体科学和技术》2019,21(12):125001-5
A variational method is introduced to analyze the transmissivity of an electromagnetic wave propagating in the magnetized plasma sheath. The plasma density is modeled by two parabolic inhomogeneous regions separated by one homogeneous region. The Lagrangian density of the system is constructed based on the fluid energy density and the electromagnetic energy density.The total variation of the Lagrangian density is derived. The fluid and electromagnetic fields are numerically solved by expansion in piecewise polynomial function space. We investigate the effect of an external magnetic field on the transmissivity of the electromagnetic wave. It is found that the transmissivity is increased when an external magnetic field is applied. The dependence of transmissivity on the collision frequency between the electrons and the neutral particles has also been studied. We also show that the external magnetic field causes a shift in the critical frequency of the plasma sheath.  相似文献   

4.
In this work,microwaves and terahertz waves have performed a dual-frequency combineddiagnosis in high-temperature,large-scale plasma.According to the attenuation and phase shift of electromagnetic waves in the plasma,the electron density and collision frequency of theplasma can be inversely calculated.However,when the plasma size is large and the electron density is high,the phase shift of the electromagnetic wave is large (multiple times 2π period).Due to the limitations of the test equipment,the true phase shift is difficult to test accurately or to recover reality.That is,there is a problem of phase integer ambiguity.In order to obtain a phase shift of less than 180°,a higher electromagnetic wave frequency (terahertz wave with 890 GHz)is used for diagnosis.However,the attenuation of the terahertz wave diagnosis is too small (less than 0.1 d B),only the electron density can be obtained,and the collision frequency cannot be accurately obtained.Therefore,a combined diagnosis was carried out by combining twofrequencies (microwave with 36 GHz,terahertz wave with 890 GHz) to obtain electron density and collision frequency.The diagnosis result shows that the electron density is in the range of(0.65–1.5)×10~(19)m~(-3),the collision frequency is in the range of 0.65–2 GHz,and the diagnostic accuracy is about 60%.  相似文献   

5.
Energy dissipation and power deposition of electromagnetic waves(EMW) in the reentry plasma sheath provide an opportunity to investigate ‘communication blackout' phenomena. Based on afinite element method(FEM) simulation, we analyze variation of EMW energy dissipation and power deposition profiles dependent on the wave polarization, wave incident angle, plasma density profile and electron collision frequency. Cutoff and resonance of EMW in the plasma sheath are crucial in explaining the regulation of energy dissipation and power deposition.  相似文献   

6.
In this paper, Maxwell equations are coupled with a radially localized global model and an analytical sheath model to investigate the electromagnetic effects under various frequencies and electron powers in large-area very high frequency symmetric capacitive argon discharges.Simulation results indicate that both the vacuum wavelength and the sheath width decrease with frequency, leading to the reduced surface wavelength. As a result, the standing wave effect becomes pronounced, causing the fact that the radial profiles of the electron density, radio frequency voltage, and sheath width shift from uniform over center-high to multiple-node. When the frequency is close to or higher than the series resonance frequency, the surface waves cannot propagate to the radial center because of the significant radial damping. Due to the lack of power deposition near the radial center, the electron density is nearly zero there, i.e. the stop band effect. As power increases, the higher electron density leads to the decrease of the skin depth.Therefore, the importance of the skin effect gradually exceeds that of the standing wave effect,giving rise to the transition from the center-high to edge-high electron density profiles. The method proposed in this work could help to predict the plasma distribution under different discharge conditions in a few minutes, which is of significant importance in optimizing the plasma processing.  相似文献   

7.
In this work, the results of plasma microwave transmission diagnosis were analyzed. According to the attenuation and phase shift of the electromagnetic wave propagating in the plasma, the electron density and collision frequency of the plasma can be diagnosed. Since part of the electromagnetic wave is reflected or diffracted when propagating in the plasma, and is not absorbed by the plasma, and this part of the attenuation is still included in the measured attenuation, the attenuation is distorted. Therefore, a curve fitting method is proposed to remove the attenuation caused by the plasma reflection, thereby improving the accuracy of the diagnosis of the collision frequency. The calibration effect of this method on plasmas with different electron densities and collision frequencies is analyzed, and a diagnostic frequency band with good calibration results is given. The curve fitting method is verified by experiment and simulation. After adopting the newly proposed method, the diagnosis accuracy of collision frequency can be increased by 30%. This method can be widely used in various types of plasma diagnosis and provides a new idea for plasma diagnosis.  相似文献   

8.
Observations are presented of the phenomenon of the enhancement in electron density and temperature that is caused by a powerful pump wave at a frequency near the fifth gyrofrequency.The observations show that the apparent enhancement in electron density extending over a wide altitude range and the enhancement in electron temperature around the reflection altitude occur as a function of pump frequency.Additionally,the plasma line spectra show unusual behavior as a function of pump frequency.In conclusion,the upper hybrid wave resonance excited by the pump wave plays a dominating role and leads to the enhancement in electron temperature at the upper hybrid altitude.The phenomenon of apparent enhancement in electron density does not correspond to the true enhancement in electron density,this may be due to some mechanism that preferentially involves the plasma transport process and leads to the strong backscatter of radar wave along the magnetic line,which remains to be determined.  相似文献   

9.
The propagation of an electromagnetic wave through a fully ionized diffusing plasma slab is investigated. The slab is considered to be diffusing in an ambipolar fashion, with the electron-ion collision frequency proportional to the spatial and time varying ion density. The propagation characteristics of the wave are shown to be dependent on the relationship between np and nc, the densities where the signal frequency is equal to the plasma frequency and collision frequency respectively. This relationship is temperature dependent. The reflection and transmission coefficients of the plasma are calculated as a function of signal frequency, and their behavior as the slab diffuses is investigated.  相似文献   

10.
In this paper, the calculated results about the propagation properties of electromag-netic wave in a plasma slab are described. The relationship of the propagation properties with frequencies of electromagnetic wave, and parameters of plasma (electron temperature, electron density, dimensionless collision frequency and the size of the plasma slab) is analyzed.  相似文献   

11.
Pressure fluctuations in the plasma sheath from spacecraft reentry affect radiofrequency(RF) wave propagation.The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory,plasma theory,and electromagnetic wave theory.We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling.We analyzed the variations in reflection and transmission properties induced by pressure fluctuations.Our results show that,at the GPS frequency,if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection,transmission,and absorption properties.In extreme situations,the fluctuations can even cause blackout.At the Ka frequency,the influences are obvious when the waves are not totally transmitted.The influences are more pronounced at the GPS frequency than at the Ka frequency.This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves,as well as the influences of plasma fluctuations on wave propagation.Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations,the influences on link budgets should be taken into consideration.  相似文献   

12.
The distribution of magnetic field in Hall thruster channel has significant effect on its discharge process and wall plasma sheath characteristics. By creating physical models for the wall sheath region and adopting two-dimensional particle in cell simulation method, this work aims to investigate the effects of magnitude and direction of magnetic field and ion velocity on the plasma sheath characteristics. The simulation results show that magnetic field magnitudes have small impact on the sheath potential and the secondary electron emission coefficient, magnetic azimuth between the magnetic field direction and the channel radial direction is proportional to the absolute value of the sheath potential, but inversely proportional to the secondary electron emission coefficient. With the increase of the ion incident velocity, secondary electron emission coefficient is enhanced, however, electron density number, sheath potential and radial electric field are decreased. When the boundary condition is determined, with an increase of the sinmlation area radial scale, the sheath potential oscillation is aggravated, and the stability of the sheath is reduced.  相似文献   

13.
Electromagnetic (EM) behavior and instability resulting from the interaction between EM wave and plasma wave are analyzed based on linear perturbation theory. It is shown that the instability is caused by the the coupling between high frequency electromagnetic field and electron transverse oscillation derived from the deflection of electron longitudinal oscillation due to self-produced magnetic field. The influences of the self-produced magnetic field and plasma density on the instability are studied. In addition characteristics of EM wave propagation at different angles are investigated. The present results are of significance to new type plasma radiation source, ion accelerator and plasma diagnostic techniques.  相似文献   

14.
The observation of ultra-high frequency radar during an ionospheric heating experiment carried out at TromsΦ site of European Incoherent Scatter Scientific Association,Norway,is analyzed.When pump is operating slightly above the fifth electron gyrofrequency,some strong enhancements in radar echo and electron density occur in a wide altitude range and are in sync with the shifting and spread of plasma line around the reflection altitude,which may be due to the focusing or collimating of radar wave by irregularities.While some strong enhancements in electron density and radar echo around the reflection altitude do not correspond to the true increase in electron density,but due to the enhanced ion acoustic wave by parametric decay instability and oscillation two stream instability.In addition,the different heating rates and cooling rates at the pump frequencies below,around and above fifth gyrofrequency respectively result in the dependence of the enhancements in electron temperature on the pump frequency.  相似文献   

15.
By analyzing the time evolution of artificial plasma cloud in the high altitude of atmospheric environment, we found that there are two zones, an exponential attenuation zone and a linearly attenuating zone, existing in the spatial distribution of electron density of the artificial plasma clouds. The plasma generator‘s particle flux density only contributes to the exponential attenuation zone, and has no effect on the linear attenuation zone. The average electron density in the linear attenuation zone is about 10^-5 of neutral particle density, and can diffuse over a wide rarea, The conclusion will supply some valuable references to the research of electromagnetic wave and artificial plasma interaction, the plasma invisibleness research of missile and special aerocraft,and the design of artificial plasma source.  相似文献   

16.
A three-dimensional model is proposed in this paper to study the effect of the pulsed magnetic field on the density distribution of high flow velocity plasma sheath. Taking the typical parameters of plasma sheath at the height of 71 km as an example, the distribution characteristics and time evolution characteristics of plasma density in the flow field under the action of pulsed magnetic field, as well as the effect of self-electric field on the distribution of plasma density, are studied. The simulation results show that pulsed magnetic field can effectively reduce the density of plasma sheath. Meanwhile, the simulation results of three-dimensional plasma density distribution show that the size of the density reduction area is large enough to meet the communication requirements of the Global Position System(GPS) signal. Besides, the location of density reduction area provides a reference for the appropriate location of antenna. The time evolution of plasma density shows that the effective density reduction time can reach 62% of the pulse duration, and the maximum reduction of plasma density can reach 55%. Based on the simulation results, the mechanism of the interaction between pulsed magnetic field and plasma flow field is physically analyzed. Furthermore, the simulation results indicate that the density distributions of electrons and ions are consistent under the action of plasma self-electric field.However, the quasi neutral assumption of plasma in the flow field is not appropriate, because the self-electric field of plasma will weaken the effect of the pulsed magnetic field on the reduction of electron density, which cannot be ignored. The calculation results could provide useful information for the mitigation of communication blackout in hypersonic vehicles.  相似文献   

17.
The properties of an atmospheric-pressure collisional plasma sheath with nonextensively distributed electrons and hypothetical ionization source terms are studied in this work. The Bohm criterion for the magnetized plasma is extended in the presence of an ion–neutral collisional force and ionization source. The effects of electron nonextensive distribution, ionization frequency, ion– neutral collision, magnetic field angle and ion temperature on the Bohm criterion of the plasma sheath are numerically analyzed. The fluid equations are solved numerically in the plasma–wall transition region using a modified Bohm criterion as the boundary condition. The plasma sheath properties such as charged particle density, floating sheath potential and thickness are thoroughly investigated under different kinds of ion source terms, contributions of collisions, and magnetic fields. The results show that the effect of the ion source term on the properties of atmosphericpressure collisional plasma sheath is significant. As the ionization frequency increases, the Mach number of the Bohm criterion decreases and the range of possible values narrows. When the ion source is considered, the space charge density increases, the sheath potential drops more rapidly, and the sheath thickness becomes narrower. In addition, ion–neutral collision, magnetic field angle and ion temperature also significantly affect the sheath potential profile and sheath thickness.  相似文献   

18.
Effective control of hypersonic transition is essential. In order to avoid affecting the structural profile of the aircraft, as well as reducing power consumption and electromagnetic interference, a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in the Φ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology. Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination. Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave. At the same time, the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves. Finally, the corresponding control mechanism is discussed.  相似文献   

19.
The inhomogeneity is introduced by a nonzero density gradient which separates the plasma into two different regions where plasma density are constant. The Alfvén waves, the phase mixing and the fast magnetosonic wave are excited by the boundary condition in inhomogeneous magnetized plasma. By using the Hall–magnetohydrodynamics(MHD) model, it is found that there are Alfvén waves in the homogeneous regions, while the phase mixing appears in the inhomogeneous region. The interesting result is that a fast magnetosonic wave is excited in a different direction which has a nonzero angle between the wave propagation direction and the direction of the background magnetic field. The dependence of the propagation direction of the excited fast magnetosonic wave and its strength of the magnetic field on the plasma parameters are given numerically. The results show that increasing both the driving frequency and the ratio of magnetic pressure to thermal pressure will increase the acceleration of the electrons. The electron acceleration also depends on the inhomogeneity parameters.  相似文献   

20.
In order to demonstrate the modulation of terahertz wave propagation in atmospheric pressure microplasmas, in this work, the band structure and the transmission characteristics of a onedimensional collisional microplasma photonic crystal are investigated, using the transfer matrix method. For a lattice constant of 150 μm and a plasma width of 100 μm, three stopbands of microplasma photonic crystal are observed, in a frequency range of 0.1–5 THz. Firstly, an increase in gas pressure leads to a decrease in the central frequency of the stopband. When the gas pressure increases from 50.5 kPa to 202 kPa, the transmission coefficient of the THz wave first increases and then decreases at high frequency, where the wave frequency is much greater than both the plasma frequency and the collision frequency. Secondly, it is interesting to find that the central frequency and the bandwidth of the first THz stopband remain almost unchanged for electron densities of less than 1015 cm–3, increasing significantly when the electron density increases up to 1016 cm–3. A central frequency shift of 110 GHz, and a bandgap broadening of 200 GHz in the first stopband are observed. In addition, an atmospheric pressure microplasma with the electron density of 1 × 1015–6 × 1015 cm–3 is recommended for the modulation of THz wave propagation by plasma photonic crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号