首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
采用波长为744 nm、聚焦功率密度为6×1016W/cm2的超短激光分别与两种不同厚度的铝薄膜靶相互作用,根据鞘层加速机制在靶后法线方向测量质子束角分布和能谱随靶厚度的变化,研究了预脉冲对质子加速的影响。随着薄膜靶厚度的降低,质子计数迅速增加,但当薄膜靶厚度太薄时,激光预脉冲形成的预等离子体影响了薄膜靶的面型,导致质子横向发散角迅速增加,而薄膜靶面型的破坏减少了激光与等离子体相互作用过程中的电子回流,从而降低了超热电子的产生和鞘层加速电场的维持,影响了质子的加速能谱。因此,超短脉冲激光与薄膜靶相互作用加速产生质子束,应尽量降低预脉冲,不能采用太薄的薄膜靶,以避免预等离子体影响薄膜靶的面型,导致质子的能量降低、发散角增大。  相似文献   

2.
在中国原子能科学研究院的放电泵浦的紫外KrF超短脉冲激光放大装置上,开展了紫外超短脉冲激光与铜薄膜靶相互作用加速产生质子束的实验研究。紫外超短脉冲激光输出能量为30 mJ、波长为248 nm、脉冲宽度为500 fs,采用离轴抛物面镜聚焦获得激光聚焦功率密度为1.2×1017 W/cm2。激光以45°入射5 μm厚的铜薄膜靶,质子最大能量超过300 keV。紫外超短脉冲激光的高对比度和高吸收效率是紫外激光加速的优点。  相似文献   

3.
物理学家利用高能粒子加速器进行了多方面的研究,但高能粒子加速器庞大且耗资巨大。随着超短超强激光的发展,现在的激光的功率密度可达到10^22W/cm^2。许多实验室利用不同功率密度的激光与固体靶、薄膜靶及气体等相互作用,进行加速产生高能粒子的研究。其中,利用超短超强激光与薄膜薄相互作用加速产生质子是一重要的研究课题,利用超热电子加速产生超热电子,  相似文献   

4.
近年来,随着CPA(脉冲啁啾放大)等技术的发展,激光功率有了很大提高,超短脉冲激光器及超短脉冲激光与物质相互作用的研究已发展成为当今世界最热门最前沿的领域。日前,基于CPA技术的超短脉冲激光系统已经达到PW(1015)量级。紫外超短脉冲激光在强场物理及惯性约束核聚变快速点火等研究中具有无可比拟的优势,在小型超快中子源、激光化学、激光生物学等众多领域有着广泛应用。 准分子激光器在放大超短脉冲方面具有独特的优势。基于它的气体性质和饱和能量低、超短脉冲放大过程中的非线性效应小,可不采用CPA路线而直接将超短脉冲激光放大到1019W/cm2,甚至更高。它还可以提供一个信噪比高达1010的干净脉冲,这对于激光靶物理实验非  相似文献   

5.
利用超热电子磁谱仪测量了紫外超短脉冲激光与固体等离子体相互作用产生超热电子的能谱,在无预脉冲、激光强度为1017 W/cm2 条件下,紫外超短脉冲激光与固体(Cu)等离子体相互作用产生超热电子的能谱呈双温麦克斯韦分布,超热电子温度为81 keV,激光吸收的主导机制为真空吸收。  相似文献   

6.
利用电子磁谱仪测量紫外超短脉冲激光与固体等离子体相互作用产生超热电子的能谱,在无预脉冲、激光强度为1017 W/cm2的条件下,紫外(248 nm)超短(440 fs)脉冲激光与固体(Cu)等离子体相互作用产生超热电子的能谱呈双温麦克斯韦分布, 超热电子温度为81 keV,激光吸收的主导机制为真  相似文献   

7.
固体径迹探测器广泛应用于科学和技术方面,CR39是其中使用很频繁的一种塑料探测器。由于电子和伽马光子在CR39中的碰撞截面很小,远小于中子、质子或其他离子的碰撞截面,因此可认为固体径迹探测器CR39对电子和光子不响应,而仅对中子、质子或其他离子响应,这给CR39在实验中的应用带来很大优点。在超短超强脉冲激光与等离子体相互作用的实验中,会产生大量的强伽马射线、热电子或超热电子,而在有些实验如超短超强脉冲激光加速产生高能质子束的研究中,需单独对质子束的通量、角分布、能谱等参数进行详尽的测量。  相似文献   

8.
描述了对双脉冲辐照薄膜锗靶形成的等离子体参量诊断的实验研究。使用平晶谱仪和时间分辨X射线晶体谱仪诊断等离子体参量,给出了等离子体的电子密度、电子温度及其时间演变过程。实验结果表明:双脉冲打靶比单脉冲打靶电子温度有较大幅度提高。诊断结果为双脉冲驱动薄膜靶高增益X射线激光实验选择最佳的实验条件提供了实验依据。  相似文献   

9.
描述了对双脉冲辐照薄膜锗靶形成的等离子体参量诊断的实验研究。使用平晶谱仪和时间分辨 X 射线晶体谱仪诊断等离子体参量,给出了等离子体的电子密度、电子温度及其时间演变过程。实验结果表明:双脉冲打靶比单脉冲打靶电子温度有较大幅度提高。诊断结果为双脉冲驱动薄膜靶高增益 X 射线激光实验选择最佳的实验条件提供了实验依据。  相似文献   

10.
主要研究了激光参数和靶参数对产生质子能量的影响。为了获得尽可能的质子能量,激光参数如下:尽可能高的激光能量;采用P极化偏振光;预脉冲有一最优长度及最优预脉冲与主脉冲强度比;激光垂直入射;采用基频光。靶参数(材料、厚度、结构形状)对产生高能质子能量、产额、方向性有影  相似文献   

11.
主要研究了激光参数和靶参数对产生质子能量的影响。为了获得尽可能的质子能量,激光参数如下:尽可能高的激光能量;采用P极化偏振光;预脉冲有一最优长度及最优预脉冲与主脉冲强度比;激光垂直入射;采用基频光。  相似文献   

12.
紫外白相关仪是用于记录波长248nm的亚皮秒激光脉冲白相关曲线的精密仪器,在飞秒系统中用来测量紫外超短激光脉冲的脉冲宽度。紫外白相关仪的工作介质是高纯度的NO气体,工作中的电离过程将不断消耗NO气体并产生一些杂质。  相似文献   

13.
从理论上研究和模拟计算在高度电离的等离子体中通过复合机制产生软X光激光的条件。用一维非平衡辐射流体力学激光打靶程序JB-19模拟计算激光与靶的相互作用。激光经线聚焦后照射到碳纤维靶上,在脉冲持续时间内可以产生高度电离的等离子体,脉冲结束后等离子体绝热膨胀,实现快速冷却,经三体复合和级联跃迁,在主量子数n=3与n=2之间形成粒子数反转,产生激光增益。对计算结果和物理过程进行了分析,讨论了影响增益的诸因素,并与英国卢瑟福实验室的结果进行了比较。介绍了类-H氟离子中产生粒子数反转和增益的初步结果。结论是在一定的激光能量范围内,入射激光脉冲波长愈短、脉宽愈窄,产生的增益愈大。要获得较好的增益区,对于钕玻璃激光来说,倍频是必要的,短脉冲是有益的。  相似文献   

14.
从理论上研究和模拟计算在高度电离的等离子体中通过复合机制产生软X光激光的条件。用一维非平衡辐射流体力学激光打靶程序JB-19模拟计算激光与靶的相互作用。激光经线聚焦后照射到碳纤维靶上,在脉冲持续时间内可以产生高度电离的等离子体,脉冲结束后等离子体绝热膨胀,实现快速冷却,经三体复合和级联跃迁,在主量子数n=3与n=2之间形成粒子数反转,产生激光增益。对计算结果和物理过程进行了分析,讨论了影响增益的诸因素,并与英国卢瑟福实验室的结果进行了比较。介绍了类-H氟离子中产生粒子数反转和增益的初步结果。结论是在一定的激光能量范围内,入射激光脉冲波长愈短、脉宽愈窄,产生的增益愈大。要获得较好的增益区,对于钕玻璃激光来说,倍频是必要的,短脉冲是有益的。  相似文献   

15.
高强度紫外飞秒激光作为ICF“快点火”的点火驱动器具有独特的优势。第一,紫外光具有更大的临界密度,产生超热电子区域更靠近燃料区,这就简化了所有与把能量输运到燃料区的物理过程;第二,按照超热电子温度Iλ2定标率,在“快点火”要求的强度下(1020w/cm2),紫外光刚好能够产生可以与燃料区高效率耦合的超热电子温度(1MeV);此外,紫外光具有更好的可聚焦性,在较低的能量下就可以达到要求的强度。目前,大多数关于紫外飞秒激光与固体靶相互作用的研究集中于吸收机制和软X射线方面,关于硬X射线和超热电子方面的研究非常缺乏。Teubner等利用K-α线谱方法研究了KrF激光在固体靶中的吸收和超热电子产生,Broughto和Fedosjevs等研究了脉冲宽度为1~100ps的KrF激光辐照固体靶产生  相似文献   

16.
采用飞秒激光与金属薄膜靶相互作用,测量了前向(靶背方向)发射的快电子和快质子.实验显示:快电子主要沿靶背法线附近发射且有较大的发散角,这与PIC模拟的结果一致;快质子发射方向与快电子大体一致,但其发散角远小于快电子.原因在于电子产生和加速在靶前(激光辐照面),在输运中受过密等离子体和靶的散射;而质子来源于靶背的含H污染物,并由靶法线鞘加速机制(TNSA)加速,未受散射地到达探测器.快电子和快质子能谱给出的快电子有效温度和质子最大能量较好地满足定标关系Emax=αTh,其中α≈2.  相似文献   

17.
介绍了功率密度4×1016W/cm2,脉宽120 fs情况下超短超强激光分别与5和2.1 μm薄膜铝靶作用加速质子的实验。采用CR-39固体径迹探测器和Thomson谱仪结合测量得到质子能谱,并对实验结果进行分析。测得的5 μm铝靶的质子最大能量约为140 keV,2.1 μm铝靶的质子最大能量约为170 keV。2.1 μm铝靶的质子产额较5 μm铝靶的高1个量级。  相似文献   

18.
本文利用二维PIC模拟了超短超强激光与陡峭密度梯度等离子体相互作用过程中电子的加热机制。结果表明,在1023 W/cm2的超短超强激光场与陡峭密度分布的μm级等离子体层相互作用的过程中有质动力加速、大幅度等离子体尾场及共振吸收共同决定了电子束的加速与加热。  相似文献   

19.
将紫外超短激光脉冲经过放电泵浦KrF激光放大器LLG50、“天光一号”电子束泵浦KrF激光预放大器和主放大器进行了3级放大,最终将1 mJ的超短脉冲激光放大到了8 J。建立了超短激光和ASE互相竞争放大的动态模型,分析了ASE对多级放大的影响,并提出了抑制ASE、提高放大效率的方法。 1  相似文献   

20.
近年来,超短脉冲激光及其与物质相互作用的研究已发展成为现代物理的一个最前沿领域。提高激光的能量和功率密度以开展强场物理的研究,需采用合适的技术路线进行超短脉冲激光的放大。电子束泵浦KrF激光器口径大、泵浦率高,可直接用于进行超短脉冲激光的放大,一方面可获得高的能量输出,另一方面技术路线简单,解决了传统CPA技术所需的大口径光栅等技术难点,非  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号