首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Velocity of hydrogen plasmas rotating due to imposed E × B fields at the Maryland Centrifugal Experiment (MCX) (Ellis et al., Phys Plasmas 12:055704, 2005), where E is the electric field in the radial direction and B the magnetic field in the axial direction of a cylindrical configuration, has traditionally been measured using Doppler shifts of atomic spectra from impurity elements such as carbon. Ideally, the gyrocenter of trace particles rotates at the bulk plasma velocity, regardless of the charged state or trace particle mass. However, for sufficiently large applied |E/B| (or equivalently, a sufficiently large ratio of bulk plasma rotation frequency and particle gyrofrequency), charged particles may have gyroradii that depart significantly from quasi-circular orbits drifting about the B field axis. This effect is investigated numerically with a single particle code that includes scattering, as well as experimentally at MCX. Numerical findings are compared to experimentally measured Doppler shifts of singly inonized helium and oxygen, and doubly ionized carbon atoms.  相似文献   

2.
A small plasma gun with parallel-plate configuration is fabricated to generate a bunch of plasma which is similar to ELM (edge localized mode) plasma, by taking advantages of its simplicity and cost-effectiveness. Prior to explore how to control the ELM-like plasma so as to relieve heat load on the divertor target, characteristics of a plasma jet ejected from the plasma gun are investigated using a quadruple Langmuir probe which is appropriate for measuring rapidly varying plasma parameters such as electron density, temperature, and ion velocity at the same time. The plasma density and ion velocity measured at 112 mm away from the exit are 3 × 1019 m?3 and 11 km/s, respectively, which seem to be suitable for investigating next step research on the control of ELM-like plasma using various methods such as electromagnetic waves and high-voltage pulses. Also, the quadruple Langmuir probe is proven to be adequate for use in such experiments.  相似文献   

3.
Magnum-PSI is a linear plasma generator, built at the FOM-Institute for Plasma Physics Rijnhuizen. Subject of study will be the interaction of plasma with a diversity of surface materials. The machine is designed to provide an environment with a steady state high-flux plasma (up to 1024 H+ ions/m2 s) in a 3 T magnetic field with an exposed surface of 80 cm2 up to 10 MW/m2. Magnum-PSI will provide new insights in the complex physics and chemistry that will occur in the divertor region of the future experimental fusion reactor ITER and reactors beyond ITER. The conditions at the surface of the sample can be varied over a wide range, such as plasma temperature, beam diameter, particle flux, inclination angle of the target, background pressure and magnetic field. An important subject of attention in the design of the machine was thermal effects originating in the excess heat and gas flow from the plasma source and radiation from the target.  相似文献   

4.
General Fusion is planning to form an FRC or spheromak of 1017 cm−3, 100 eV, 40 cm diameter by merging two spheromaks with reverse or co-helicity. This target will be further compressed in a 3 m diameter tank filled with liquid PbLi with the plasma in the center. The tank is surrounded with pneumatically powered impact pistons that will send a convergent shock wave in the liquid to compress the plasma to 1020 cm−3, 10 keV, 4 cm diameter for 7 μs. General Fusion has built a 500 kJ, 80 μs, 6 GW pneumatic impact piston capable of developing 2 GPa (300 kpsi). In this paper we will present the performances achieved to date.  相似文献   

5.
The low-aspect-ratio (A) reversed field pinch (RFP) offers attractive properties such as enhanced bootstrap current and simpler MHD mode dynamics. The RELAX (REversed field pinch of Low-Aspect ratio eXperiment) machine with the world’s lowest A of 2 (R/= 0.5 m/0.25 m) has been constructed to explore the RFP properties in low-A regime. In flat-topped low-A RFP discharges in RELAX, plasma current of ~50 kA has been attained with discharge duration of ~2 ms. In round-topped discharges with plasma current of ~70 kA, quasi-periodic growth of a single helical mode has been observed. When the dominant m = 1/n = 4 mode grows, the toroidal mode spectrum looks like that of the quasi-single helicity (QSH) RFP state with higher amplitude. MHD equilibrium analyses using a reconstruction code have shown that the bootstrap current fraction is lower than ~5% in the present RELAX plasmas, and it will be ~25% if we could achieve the plasma density of 4 × 1019 m−3 and electron temperature of 300 eV at plasma current of ~100 kA.  相似文献   

6.
Formation of tokamak-like plasmas via electrostatic helicity injection in the ultra-low aspect ratio Pegasus Toroidal Experiment is reported. Two low-impurity, high-current (1 kA) washer gun current sources have been installed in the lower divertor region. These initially drive current along helical field lines produced by the applied toroidal and vertical fields. At sufficiently low values of externally applied vertical field, the poloidal field generated by the plasma is large enough to cause a poloidal flux reversal. In these cases the plasma relaxes into a tokamak-like configuration. Discharges with I ϕ≈ 30 kA are produced with less than 2 kA of injected current. These discharges exhibit features indicative of tokamak plasmas, including reversal of poloidal flux at the center column, strong vacuum field deformation, increased current decay times, increased core heating, and characteristic MHD modes common to other helicity-injection-driven toroidal devices.  相似文献   

7.
The Fusion Advanced Studies Torus (FAST) conceptual study has been proposed [A. Pizzuto on behalf of the Italian Association, The Fusion Advanced Studies Torus (FAST): a proposal for an ITER Satellite facility in support of the development of fusion energy, in: Proceedings of 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, October 13–18, 2008; Nucl. Fusion, submitted for publication] as possible European ITER Satellite facility with the aim of preparing ITER operation scenarios and helping DEMO design and R&D. Insights into ITER regimes of operation in deuterium plasmas can be obtained from investigations of non linear dynamics that are relevant for the understanding of alpha particle behaviours in burning plasmas by using fast ions accelerated by heating and current drive systems.FAST equilibrium configurations have been designed in order to reproduce those of ITER with scaled plasma current, but still suitable to fulfil plasma conditions for studying burning plasma physics issues in an integrated framework. In this paper we report the plasma scenarios that can be studied on FAST, with emphasis on the aspect of its flexibility in terms of both performance and physics that can be investigated. All plasma equilibria satisfy the following constraints: (a) minimum distance of 3 energy e-folding length (assumed to be 1 cm on the equatorial plane) between plasma and first wall to avoid interaction between plasma and main chamber; (b) maximum current density in the poloidal field coils, transiently, up to around 30 MA/m2. The discharge duration is always limited by the heating of the toroidal field coils that are inertially cooled by helium gas at 30 K. The location of the poloidal field coils has been optimized in order to: minimize the magnetic energy; produce enough magnetic flux (up to 35 Wb stored) for the formation and sustainment of each scenario; produce a good field null at the plasma break-down (BP/BT < 2 × 10−4 at low field, i.e. BT = 4 T and ET = 2 V/m for at least 40 ms).Plasma position and shape control studies will also be presented. The optimization of the passive shell position slows the vertical stability growth time down to 100 ms.  相似文献   

8.
《Fusion Engineering and Design》2014,89(7-8):1074-1080
Beryllium will be used as a plasma facing material for ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of ITER first wall. The results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility are presented. The Be/CuCrZr mock-ups were exposed to upto 100 shots by deuterium plasma streams with pulse duration of 0.5 ms at ∼250 °C and average heat loads of 0.5 and 1 MJ/m2. Experiments were performed at 250 °C. The evolution of surface microstructure and cracks morphology as well as beryllium mass loss are investigated under erosion process.  相似文献   

9.
We investigated the motion of plasma jets in a quadripole magnetic field produced by four current conductors whose axial lines were bent through 90° (the curvature radius was 30 cm). The maximum strength of the magnetic field in the slit between the current conductors was 6 kOe. The plasma jet, which was produced by means of a coaxial gun, was injected along the axis of the magnetic system. The magnetic system was adequate for defecting the plasma jet, which had an initial velocity of 8×106 cm/sec and a maximum concentration before deflection of 2×1015 cm–3. The jet velocity was equal to 7×106 cm/sec. In spite of the considerable loss of particles (due to the presence of slits in the magnetic system), the ion concentration in the jet beyond the turn attained 2×1014 cm–3, while the over-all number of particles was as large as 1017.As a result of deflection, it was possible to eliminate completely the neutral gas accompanying the jet and to obtain virtually totally ionized plasma. The optimum value of the magnetic field's strength was 8 kOe.Translated from Atomnaya Énergiya, Vol. 19, No. 4, pp. 329–335, October, 1965  相似文献   

10.
The new test facility ELISE (Extraction from a Large Ion Source Experiment) has been designed and installed since November 2009 at IPP Garching to support the development of the radio frequency driven negative ion source for the Neutral Beam System on ITER. The test facility is now completely assembled; all auxiliary systems have been commissioned and are operational. First plasma and beam operation is starting in October 2012.The source is designed to deliver an ion beam of 20 A of D? ions, operating at 0.3 Pa source pressure at an electron to ion current ratio below 1. Beam extraction is limited to 60 kV for 10 s every 3 minutes, while plasma operation of the source can be performed continuously for 1 hour. The ion source and extraction system have the same width as the ITER source, but only half the height, i.e. 1 × 1 m2 source area with an extraction area of 0.1 m2. The aperture pattern of the extraction system and the multi driver source concept stay as close as possible to the ITER design. Easy access to the source for diagnostic tools or modifications allows to analyze and optimize the source performance. Among other possibilities many different magnetic filter field configurations inside the source can be realized to enhance the negative ion extraction and to reduce the co-extraction of electrons. Beam power and profiles are measured by calorimetry and thermography on an inertially cooled target as well as by beam emission spectroscopy. Cs evaporation into the source is done via two dispenser ovens.  相似文献   

11.
The construction phase of the linear plasma generator Magnum-PSI at the FOM institute DIFFER has been completed and the facility has been officially opened in March 2012. The scientific program to gain more insight in the plasma–wall interactions relevant for ITER and future fusion reactors has started.In Magnum-PSI, targets of a wide range of materials and shapes can be exposed to high particle, high heat flux plasmas (>1024 ions m?2 s?1; >10 MW/m2). For magnetization of the plasma, oil-cooled electromagnets are temporarily installed to enable pulsed operation until the device is upgraded with a superconducting magnet. The magnets generate a field of up to 1.9 T close to the plasma source for a duration of 6 s. Longer exposure times are available for lower field settings.Plasma characterizations were done with a variety of gases (H, D, He, Ne and Ar) to determine the machine performance and prepare for subsequent scientific experiments. Thomson scattering and optical emission spectroscopy were used to determine the plasma parameters while infrared thermography and target calorimetry were used to determine the power loads to the surface.This paper reports on the status of Magnum-PSI and its diagnostic systems. In addition, an overview of the plasma parameters that can be achieved in the present state will be given.  相似文献   

12.
Solenoid-free tokamak startup via point-source DC helicity injection is demonstrated on the Pegasus Toroidal Experiment using a high current density, low impurity plasma gun mounted near the outboard midplane. A threshold in the vacuum vertical magnetic field strength that allows the injected current filament to relax into a tokamak-like topology is observed. A simple 2-D model of the vacuum magnetic field suggests this threshold is the maximum field strength that allows a toroidally connected field null to form. Discharges with I p ≈ 17 kA are produced using less than 2 kA of injected current and no inductive drive. The tokamak-like discharges exhibit current decay times about five times longer than the injected current decay, expansion of the plasma into the vacuum region and a significant increase in the line-integrated density.  相似文献   

13.
We report on the development of compact toroid (CT) accelerators to create the target plasma for magnetized target fusion (MTF) devices. Due to the requirements of high initial density of ~1017 cm−3, strong internal fields of 5–10 T, and base temperatures of >100 eV, a design based on conical compression electrodes is an effective avenue to pursue. Progress is being made at General Fusion Inc, (Vancouver, Canada) to develop a pair of large CT accelerators for generating an MTF target plasma. In this design, tungsten coated conical electrodes (with a formation diameter of 1.9 m, a radial compression factor of 4, and overall accelerator length of 5 m) will be used to achieve ohmic heating and acceleration of the CT, yet with low wall sputtering rates. A pair of these accelerators can be synchronized and shot at one another, producing a collision and reconnection of the two CTs within the center of an MTF chamber. Depending on the choice of relative helicities, the two CTs will merge to form either a spheromak-like or an FRC-like plasma. ICC 2008 Reno NV, June 25th, IP: 021.  相似文献   

14.
To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m2 and 0.43 ± 0.01 GW/m2. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.  相似文献   

15.
By repeated injection of magnetic helicity (K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.  相似文献   

16.
Plasma focus devices are characterized by short-lived dense and hot plasma “pinch” due to the radial compression and electromagnetic acceleration. Through a short period of time, typically a few tens of nanoseconds, the pinched plasma goes through two phases of compression (thermal) and expansion (non-thermal or beam target) that provide necessary conditions for high nuclear reaction rates. If appropriate gas admixture at a desirable pressure is used, the processes can generate short-lived radioisotopes (SLRs) which the level of activities depends on the design and operational parameters. In this paper, the results of simulated theoretical works of two SLRs such as 10B (d, n) 11C and 14N (d, n) 15O are presented using a Filippov-type plasma focus “Dena” as a breeder with the bank energy ranges from 20 to 90 kJ at the repetition rates from 1 to 10 Hz. The admixture gas pressure of 10B and 14 N were taken to be approximately 0.05 of initial working pressure at optimum neutron yield regime. The results obtained are discussed.  相似文献   

17.
Recently magnetic fluctuations in the Maryland centrifugal experiment (MCX) have been measured by an azimuthal array of 16 probes in the edge region of the plasma. A detailed analysis indicates that there is primarily a convection of m = 2 fluctuations by the azimuthally rotating plasma. However, the frequency spectrum of this mode is broad and is almost of the same order as the frequency. Furthermore, bicoherence analysis indicates dominant nonlinear interaction between m = 2 and a low frequency m = 0 mode. We utilize a 2D MHD code to investigate the dynamics of the primary interchange instability. For very low sheared rotation there is a broad spectrum (in m) of unstable modes. However, as the sheared rotation is increased the high mode numbers become stabilized. We will present detailed comparisons of spatio-temporal dynamics of our simulations with the data from the magnetic probes.  相似文献   

18.
For operation of the plasma focus in argon, a focus pinch compression temperature range of 1.4–5 keV (16.3 × 106–58.14 × 106 K) is found to be suitable for good yield of argon soft X-rays (SXR) Ysxr. This is based on reported temperature measurements of argon plasmas working at regime for X-ray output. Using this temperature window, numerical experiments have been investigated on AECS PF-2 plasma focus device with argon filling gas. The model was applied to characterize the 2.8 kJ plasma focus AECS PF-2. The optimum Ysxr was found to be 0.0035 J. Thus, we expect to increase the argon Ysxr of AECS PF-2, without changing the capacitor bank, merely by changing the electrode configuration and operating pressure. The Lee model code was also used to run numerical experiments on AECS PF-2 with argon gas for optimizing soft X-ray yield with reducing L0, varying z0 and ‘a’. From these numerical experiments we expect to increase the argon Ysxr of AECS PF-2 with reducing L0, from the present computed 0.0035 J at L0 = 270 nH to maximum value of near 0.082 J, with the corresponding efficiency is about 0.03%, at an achievable L0 = 10 nH.  相似文献   

19.
In the framework of the strategy for the development and the procurement of the NB systems for ITER, it has been decided to build in Padova a test facility, including two experimental devices: a full size plasma source with low voltage extraction and a full size NB injector at full beam power (1 MV). These two different devices will separately address the main scientific and technological issues of the 17 MW NB injector for ITER. In particular the full size plasma source of negative ions will address the ITER performance requirements in terms of current density and uniformity, limitation of the electron/ion ratio and stationary operation at full current with high reliability and constant performances for the whole operating time up to 1 h. The required negative ion current density to be extracted from the plasma source ranges from 290 A/m2 in D2 (D?) and 350 A/m2 in H2 (H?) and these values should be obtained at the lowest admissible neutral pressure in the plasma source volume, nominally at 0.3 Pa. The electron to ion ratio should be limited to less than 1 and the admissible ion inhomogeneity extracted from the grids should be better than 10% on the whole plasma cross-section having a surface exposed to the extraction grid of the order of 1 m2.The main design choices will be presented in the paper as well as an overview of the design of the main components and systems.  相似文献   

20.
《Fusion Engineering and Design》2014,89(9-10):2150-2154
In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 1023–1025 m−2 s−1 hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号