首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, three dielectric barrier discharge(DBD) configurations, which were plain DBD with no packing, DBD with packed pure quartz fibers and DBD with packed loaded quartz fibers, were employed to investigate the effect and catalytic mechanism of catalyst materials in a packed-bed ozone generator. From the experimental results, it was clear that the DBD configuration with packed pure fibers and packed loaded fibers promotes ozone generation. For the packed-bed reactor, ozone concentration and ozone yield were enhanced by an increase of electric field in the discharge gap with the packed-bed effect. Meanwhile, the enhancement of ozone concentration and yield for the DBD reactor packed by loaded fibers with silica nanoparticles was due to the catalysis of silica nanoparticles on the fiber surface. The adsorption of silica nanoparticles on the fiber surface can prolong the retention time of active species and enhance surface reactions.  相似文献   

2.
Air pollution is a major health problem in developing countries and has adverse effects on human health and the environment. Non-thermal plasma is an effective air pollution treatment technology. In this research, the performance of a dielectric barrier discharge (DBD) plasma reactor packed with glass and ceramic pellets was evaluated in the removal of SO2 as a major air pollutant from air in ambient temperature. The response surface methodology was used to evaluate the effect of three key parameters (concentration of gas, gas flow rate, and voltage) as well as their simultaneous effects and interactions on the SO2 removal process. Reduced cubic models were derived to predict the SO2 removal efficiency (RE) and energy yield (EY). Analysis of variance results showed that the packed-bed reactors (PBRs) studied were more energy efficient and had a high SO2 RE which was at least four times more than that of the non-packed reactor. Moreover, the results showed that the performance of ceramic pellets was better than that of glass pellets in PBRs. This may be due to the porous surface of ceramic pellets which allows the formation of microdischarges in the fine cavities of a porous surface when placed in a plasma discharge zone. The maximum SO2 RE and EY were obtained at 94% and 0.81 g kWh−1, respectively under the optimal conditions of a concentration of gas of 750 ppm, a gas flow rate of 2 l min−1, and a voltage of 18 kV, which were achieved by the DBD plasma packed with ceramic pellets. Finally, the results of the model's predictions and the experiments showed good agreement.  相似文献   

3.
Recently, packed-bed discharge plasma technologies have been widely studied for treatment of volatile organic compounds (VOCs), due to the good performance in improving the degradation and mineralization of VOCs. In this paper, a coaxial cylindrical dielectric barrier discharge reactor packed with porous material of micron-sized pores was used for degradation of benzene, and the discharge characteristics and ozone generation characteristics were studied. When the discharge length was 12 cm and the filling length was 5 cm, the packed particles in the discharge area significantly increased the number of micro-discharges, and the current amplitude and density increased with the pore size of packed particles, but the discharge power and ozone concentration showed a trend of first increasing and then decreasing. The discharge power and ozone production reached the maximum when the size of pore former was 75 μm, correspondingly, the degradation efficiency of benzene was the highest.  相似文献   

4.
To compensate for the shortcomings of the thermal and catalytic regeneration of the diesel particulate filter(DPF),a self-designed packed-bed dielectric barrier discharge(DBD)reactor for DPF regeneration was developed.The DBD reactor with the main active substance of nonthermal plasma(NTP)as the target parameter was optimized by adjusting the feed gas,packing particles(material or size),and cooling water temperature.Moreover,a set of optimal working parameters(gas source,O2;packing particles,1.2-1.4 mm ZrO2;and cooling water temperature,20℃)was selected to evaluate the effect of different O3 concentrations on DPF regeneration.The research results showed that selecting packing particles with high dielectric constant and large particles,as well as reducing the cooling water temperature,with oxygen as the feed gas,contributed to an increase in O3 concentration.During DPF regeneration,the following changes were observed:the power of the NTP reactor decreased to lower than 100 W,the O3 concentration increased from 15 g m-3 to 45 g m-3,the CO and CO2 volume fractions of the particulate matter decomposition products increased,and the peak regeneration temperature increased to 173.4℃.The peak temperature arrival time was 60 min earlier,indicating that the regeneration rate of DPF increased with the increase in O3 concentration.However,the O3 utilization rate(the amount of carbon deposit removed per unit volume O3)initially increased and then decreased;when the O3 concentration was set to 25 g m-3,the highest O3 utilization rate was reached.The packed-bed DBD technology contributed to the increase in the concentration of NTP active substances and the regeneration efficiency of DPF.It provides a theoretical and experimental basis for high-efficiency regeneration of DPF at low temperatures(<200℃).  相似文献   

5.
In this work, a single Al2O3 particle packed dielectric barrier discharge (DBD) reactor with adjustable discharge gap is built, and the influences of the particle shape (ball and column) and the residual gap between the top electrode and particle on the electrical and optical characteristics of plasma are studied. Our research confirms that streamer discharge and surface discharge are the two main discharge patterns in the single-particle packed DBD reactor. The strong electric field distortion at the top of the ball or column caused by the dielectric polarization effect is an important reason for the formation of streamer discharge. The length of streamer discharge is proportional to the size of the residual gap, but the number of discharge times of a single voltage cycle shows an opposite trend. Compared to the column, a smooth spherical surface is more conducive to the formation of large and uniform surface discharges. The surface discharge area and the discharge intensity reach a maximum when the gap is equal to the diameter of the ball. All in all, the results of this study will provide important theoretical support for the establishment of the synergistic characteristics of discharge and catalysis in plasma catalysis.  相似文献   

6.
This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200℃ . The studies were conducted at different temperatures and the results were discussed.  相似文献   

7.
Ultrafine particles(UFPs) are harmful to human beings, and their effective removal from the environment is an urgent necessity. In this study, a dielectric barrier discharge(DBD) reactor packed with porous alumina(PA) balls driven by a pulse power supply was developed to remove the UFPs(ranging from 20 to 100 nm) from the exhaust gases of kerosene combustion. Five types of DBD reactors were established to evaluate the effect of plasma catalysis on the removal efficiency of UFPs. The influences of gas flow rate, peak voltage and pulse frequency of different reactors on UFPs removal were investigated. It was found that a high total UFP removal of91.4% can be achieved in the DBD reactor entirely packed with PA balls. The results can be attributed to the enhanced charge effect of the UFPs with PA balls in the discharge space. The UFP removals by diffusion deposition and electrostatic attraction were further calculated,indicating that particle charging is vital to achieve high removal efficiency for UFPs.  相似文献   

8.
With the rapid increase in the number of cars and the development of industry, nitrogen oxide(NO_x)emissions have become a serious and pressing problem. This work reports on the development of a water-cooled dielectric barrier discharge reactor for gaseous NOxremoval at low temperature. The characteristics of the reactor are evaluated with and without packing of the reaction tube with 2 mm diameter dielectric beads composed of glass, ZnO, MnO_2, ZrO_2, or Fe_2O_3. It is found that the use of a water-cooled tube reduces the temperature, which stabilizes the reaction, and provides a much greater NO conversion efficiency(28.8%) than that obtained using quartz tube(14.1%) at a frequency of 8 k Hz with an input voltage of 6.8 k V. Furthermore,under equivalent conditions, packing the reactor tube with glass beads greatly increases the NO conversion efficiency to 95.85%. This is because the dielectric beads alter the distribution of the electric field due to the influence of polarization at the glass bead surfaces, which ultimately enhances the plasma discharge intensity. The presence of the dielectric beads increases the gas residence time within the reactor. Experimental verification and a theoretical basis are provided for the industrial application of the proposed plasma NO removal process employing dielectric bead packing.  相似文献   

9.
The mechanisms of streamer generation and propagation in double-sided pulsed surface dielectric barrier discharge (SDBD) on both sides have been analyzed and investigated by experiment and numerical simulation. The fully exposed asymmetric SDBD has two discharge processes located on the high voltage electrode (HVE) side and the ground electrode (GE) side. Discharge images of the HVE side and GE side are taken by a digital camera under continuous pulse and ICCD (Intensified Charge Coupled Device) is utilized to diagnose the generation and propagation of streamers in single pulse discharge. In order to understand the physical mechanisms of streamer evolution more deeply, we establish a 2D simulation model and analyze it from the aspects of electron density, ion density, reduced electric field and electron impact ionization source term. The results show that the primary and secondary discharges on the HVE side and the GE side of the double-sided SDBD are composed of positive streamer and negative streamer, respectively. On the HVE side, the accumulation of positive charges on the dielectric surface causes the direction of the electric field to reverse, which is the principal factor for the polarity reversal of the streamer. On the GE side, both the negative charges accumulated on the dielectric surface and the falling voltage are the key factors for the streamer polarity switch.  相似文献   

10.
Energy efficiency limits the application of atmospheric pressure dielectric barrier discharge(DBD),such as air purification,water treatment and material surface modification.This article focuses on the electrical and optical effects of the DBD under three square wave pulses polarities-positive,negative and bipolar.The result shows that under the same voltage with the quartz glass medium,the discharge efficiency of bipolar polarity pulse is the highest due to the influence of deposited charge.With the increase of air gap distance from 0.5 to 1.5 mm,average power consumed by the discharge air gap and discharge efficiency decrease obviously under alumina,and increase,and then decrease under quartz glass and polymethyl methacrylate(PMMA).Through spectrum diagnosis,in the quartz glass medium,the vibration temperature is the highest under negative polarity pulse excitation.Under bipolar pulse,the vibration temperature does not change significantly with the change of air gap distance.For the three dielectric materials of quartz glass,alumina and PMMA,the molecular vibration temperature is the highest under the quartz glass medium with the same voltage.When the gap spacing,pulse polarity or dielectric material are changed,the rotational temperature does not change significantly.  相似文献   

11.
This paper discusses the conversion of nitric oxide (NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge (DBD) reactor.Alumina oxide (Al2O3),glass (SiO2) and zirconium oxide (ZrO2),three different spherical packed materials of the same size,were each present in the DBD reactor.The NO conversion under varying input voltage and specific energy density,and the effects of catalysts (titanium dioxide (TiO2) and manganese oxide (MnOx) coated on Al2O3) on NO conversion were investigated.The experimental results showed that NO conversion was greatly enhanced in the presence of packed materials in the reactor,and the catalytic packed bed of MnOx/Al2O3 showed better performance than that of TiO2/Al2O3.The surface and crystal structures of the materials and catalysts were characterized through scanning electron microscopy analysis.The final products were clearly observed by a Fourier transform infrared spectrometer and provided a better understanding of NO conversion.  相似文献   

12.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

13.
Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length.The discharge images,optical emission spectra (OES),the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained.When airflow rate is increased,the transition of the discharge mode and the variations of discharge intensity,breakdown characteristics and the temperature of the discharge plasma are investigated.The results show that the discharge becomes more diffuse,discharge intensity is decreased accompanied by the increased breakdown voltage and time lag,and the temperature of the discharge plasma reduces when airflow of small vclocity is introduced into the discharge gap.These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.  相似文献   

14.
Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,  相似文献   

15.
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 to 25 l/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOX removal at high flow rates.  相似文献   

16.
The discharge characteristics of the series surface/packed-bed discharge(SSPBD)reactor driven by bipolar pulse power were systemically investigated in this study.In order to evaluate the advantages of the SSPBD reactor,it was compared with traditional surface discharge(SD) reactor and packed-bed discharge(PBD) reactor in terms of the discharge voltage,discharge current,and ozone formation.The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors.The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis.It was found that the packed-bed discharge region(3.5 mg/L),rather than the surface discharge region(1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation.The optical emission spectroscopy analysis indicated that more intense peaks of the active species(e.g.N_2 and OI) in the optical emission spectra were observed in the packed-bed region.  相似文献   

17.
Different shapes of dielectric packing beads could affect streamer propagating direction,plasma streamer behavior,and streamer types,such as surface discharge,surface-to-surface discharge,and volume discharge.In this paper,a 2D particle-in-cell/Monte Carlo collision model is used to investigate the effect of the bead shapes on streamer characteristics in packed-bed dielectric barrier discharges.We calculate the electron density,ion density,excitation rate,ionization rate and the electric field with different bead shapes in two cases of seed electron configurations.The results demonstrate that both the configurations of seed electrons and the shape of beads could influence plasma properties.In the case of seed electrons located directly above the beads,the streamer cannot be generated with square beads,while weak surface ionization waves(SIWs)are developed with circle and triangle beads,when the distance between the seed electrons and the upper plate is as close as 0.02 mm.Whereas,the distance between the seed electrons and the upper plate is 0.06 mm,the streamers can be generated with all three bead shapes,but SIWs are still weak.This is because different shapes of beads induce different electric field and surface charging along the dielectric bead surfaces,determining the generation of SIWs.In the case of seed electrons placed between two beads,streamers can propagate in all three bead shape configurations,and the SIWs are enhanced.  相似文献   

18.
A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length,ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.  相似文献   

19.
In this paper,high resolution temporal-spatial diagnostics are employed to research the optical characteristics of nanosecond pulsed dielectric barrier discharge in needle-plate electrode configuration.Temporal-spatial distributions of discharge images,the emission intensities of opticaI emission spectra,and plasma vibrational and rotational temperatures are investigated.By analyzing the evolution of vibrational and rotational temperatures in space and time dimensions,the energy distribution and energy transfer process in plasma are also discussed.It is found that a diffuse structure with high density plasma concentrated in the region near the needle tip can be presented in nanosecond pulsed discharge,and an obvious energy transfer from electronic energy to vibration energy can be observed in each discharge pulse.  相似文献   

20.
In this work, an Ar plasma jet generated by an AC-microsecond-pulse-driven dielectric barrier discharge reactor, which had two ring-shaped electrodes isolated from the ambient atmosphere by transformer oil, was investigated. By special design of the oil insulation, a chemically active Ar plasma jet along with a safe and stable plasma process as well as low emission of CO and NOx were successfully achieved. The results indicated that applied voltage and frequency were basic factors influencing the jet temperature, discharge power, and jet length, which increased significantly with the two operating parameters. Meanwhile, gas velocity affected the jet temperature in a reverse direction. In comparison with a He plasma jet, the Ar plasma jet had relatively low jet temperature under the same level of the input parameters, being preferable for bio-applications. The Ar plasma jet has been tested to interact with human skin within 5 min without the perception of burnt skin and electrical shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号