首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种有于深部调剖的聚合物强凝胶堵剂的研究   总被引:7,自引:2,他引:5  
潘竟军 《油田化学》2002,19(1):39-42
由分子量 3× 10 6~ 5× 10 6、水解度 2 5 %的聚丙烯酰胺 (5~ 6 g/L)、重铬酸钠的氧化还原体系、延缓剂 (10 0~6 0 0mg/L)组成的聚合物强凝胶堵剂 ,可用 pH值 6 .5~ 8、矿化度 <1× 10 5mg/L的水配制 ,温度 2 0~ 75℃范围内成胶时间可在 0 .5~ 8天范围内调节。报道了典型配方实验堵剂液的性能研究结果 :在 5 0℃时 ,在人造砂岩岩心中的成胶时间为 44小时 (由突破压力曲线测得 ) ,岩心封堵率 >99.9%,经注水 5 0PV冲刷后仍不低于 99.8%,突破压力梯度在高渗透率 (87.9μm2 )岩心中不低于 30MPA/m ,在低渗透率 (9.0 μm2 )岩心中较低 ,为 2 3MPA/m ,显示了一定的选择性。在 3支串联高渗透率岩心和 3支串联低渗透率岩心并联而成的非均质模型上 ,在水驱饱和油之后(合层采收率 18.8%) ,依次用实验堵剂封堵第一、第二、第三高渗透岩心后水驱 ,合层采收率分别达到 41.8%,6 1.5 %和 74.8%。由各个岩心和岩心组的采收率得出结论 :封堵深度越大 ,采收率提高幅度越大。讨论了有关的驱油机理。  相似文献   

2.
STP强凝胶调堵剂由聚丙烯酰胺、交联剂及延缓剂组成。其中,聚丙烯酰胺的相对分子量为4.00×106—7.00×106、水解度为17.6%;交联剂为Na2Cr2O7 NH4Cl氧化还原体系;延缓剂为加入乙二醇的乳酸/丙酸/乙酸有机酸复配体系。考察了pH值、温度、矿化度及延缓剂用量等因素对STP强凝胶成胶的影响。筛选出STP强凝胶成胶的最佳条件:pH值为5.2,温度为55 ℃、矿化度小于7 g/L。在此条件下调节延缓剂用量可控制成胶时间(12—144 h)。在由3支串联高渗透率岩心和3支串联低渗透率岩心并联而成的非均质模型上,对STP液典型配方进行深部调剖驱油模拟实验研究。结果表明,在水驱饱和油之后(合层采收率为24.3%),依次用调堵剂封堵第一、第二、第三高渗岩心后水驱,合层采收率分别达46.8%、62.2%和69.1%。由此可以得出,封堵深度越大,提高采收率的幅度越大;深部调剖可增加注水对低渗透层的波及程度,未成胶的调堵剂液通过高渗层时可驱替其中的残余油。  相似文献   

3.
一种用于深部调剖的HPAM/Cr3+凝胶   总被引:4,自引:0,他引:4  
由分子量4×106~7×106、水解度17.6%的聚丙烯酰胺(5~6g/L)、氧化还原体系交联剂Na2Cr2O7 NH4Cl、加入乙二醇的乳酸/丙酸/乙酸复配有机酸延缓剂组成的STP强凝胶调剖剂,其最佳成胶条件为pH值5.2,温度55℃,矿化度<7g/L,调节延缓剂用量可控制成胶时间(12~144h),适用温度为35~80℃。在3支串联高渗透率岩心和3支串联低渗透率岩心并联而成的非均质模型上,在水驱饱和油之后(合层采收率24.3%),依次用STP调剖剂封堵第一、第二、第三高渗岩心后水驱,合层采收率分别达到46.8%、62.2%和69.1%,由此得出结论:封堵深度越大,采收率提高幅度越大。讨论了有关的驱油机理。简介了2000~2001年大庆萨中开发区48井次处理半径10~20m的STP深部调剖作业的结果(成功率91.2%)。图5参5。  相似文献   

4.
STP强凝胶调剖剂的深度调剖性能   总被引:6,自引:0,他引:6  
STP强凝胶调剖剂由聚丙烯酰胺、交联剂和延缓剂组成。用人造岩心进行凝胶性能实验,55℃时成胶时间为72h,岩心封堵率大于99.9%,注水50PV冲刷后封堵率仍不低于99.8%,突破压力梯度在高渗透率(5.62D)岩心中不低于4.45MPa/m,在低渗透率(0.57D)岩心中为3.46MPa/m,有一定的选择性。分别串联3支高渗透率岩心和3支低渗透率岩心,将二者并联构成非均质模型,饱和原油进行调剖驱油实验,未注调剖剂时的水驱合层采收率为24.3%,用调剖剂依次封堵第一、第二、第三高渗透率岩心后,水驱合层采收率分别达到46.8%、62.2%和69.1%,表明逐步增大封堵深度可以进一步提高油层采收率。STP强凝胶调剖剂在大庆油田萨中开发区的实际应用取得了明显成效。图3表1参5  相似文献   

5.
地下成胶的淀粉-聚丙烯酰胺水基凝胶调堵剂性能研究   总被引:6,自引:1,他引:5  
题示调堵剂由4.1%淀粉、4.1%AM、0.16%引发剂、0.04%交联剂组成,用吉林油田采出水(矿化度5.15 g/L)配制,30℃成胶时间17小时,成胶强度(通过面积28.3 cm2的两层20目筛网所需驱动压力)为0.85~0.95 MPa,加入0.02%~0.20%缓聚剂可使成胶时间延至25~90小时.可用不同油藏采出水(矿化度4.47~263 g/L)配制,在各该油藏温度下(40~120℃)成胶.在30 m长40~60目含粘土约30%的露头砂填充管中注入9.5 m长调堵剂,沿程压力表明该调堵剂运移性能良好;入口处表观粘度计算值为0.05 Pa·s,8.16 m处下降至0.04 Pa·s;成胶后入口注水压力达60 MPa时,5.50 m及以下压力降至零.在2 m长、K=9.78 μm2填砂管中以不同流量注入调堵剂,流出后的成胶率≥90%.在渗透率0.199~23.7μm2的4支1 m长填砂管注入0.3 PV调堵剂,成胶后注水突破压力梯度(7.8~8.4 MPa/m)、水驱至9 PV时的残余阻力系数(30~2850)及封堵率(96.7%~99.7%)均随原始渗透率增大而增大.0.3 m长2组高低渗填砂管并联,注入0.35 PV调堵剂时的分流率比与渗透率级差成正比,成胶后注水分流率发生反转.图3表5参6.  相似文献   

6.
根据形成的CDG黏度(60℃),M=1.0×106、HD=25%、疏水基含量0.25%的疏水缔合聚合物AP-P4与柠檬酸铝在矿化度44.8 g/L的模拟地层盐水中在60℃下形成CDG的条件为:聚合物浓度100~300 mg/L,聚交比20~150,最佳聚交比100,成胶时间2~7天;聚合物浓度≥400 mg/L时发生分子间交联.在Ka为0.2~1.0 μm2的人造砂岩岩心中,聚合物浓度300 mg/L的AP-P4型CDG产生的阻力系数为59.01~23.89,残余阻力系数为43.28~15.96,而相应的HPAM型CDG则分别为41.67~18.63和30.58~9.03;在Kw为0.20~0.23 μm2的人造岩心中,AP-P4型和HPAM型CDG的最高封堵率分别为94%和78%.在渗透率级差分别为12.72和4.65的两组并联双岩心组上,水驱后注入0.5 PV AP-P4型CDG使采收率分别提高16.0%和13.8%.在高盐条件下疏水缔合聚合物CDG的调驱性能优于HPAM型CDG.图3表3参3.  相似文献   

7.
针对长庆油田吴410区超低渗透、裂缝性油藏,评价了甲叉基聚丙烯酰胺类化学成胶堵剂及体膨凝胶颗粒堵剂对裂缝的封堵性能。甲叉基聚丙烯酰胺类化学成胶堵剂具有地面粘度低(≤34mPa·s,泵注性能好)、成胶时间可控(16~72h,60℃)、堵水选择性好(油相岩心封堵率≤40.7%,水相岩心封堵率≥97.6%;油相岩心突破压力≤0.91MPa/m,水相岩心突破压力≥1.75MPa/m)、封堵率高等特点;体膨凝胶颗粒堵剂具有淡水中膨胀率高、盐水中膨胀率低、膨胀后的凝胶颗粒具有变形通过性能等特点。确定了针对吴410区长6超低渗裂缝性油藏调剖工艺的"前置甲叉基聚丙烯酰胺类化学成胶堵剂+体膨凝胶颗粒堵剂+柔性胶粉堵剂封口"的调剖剂体系及"大剂量、小排量、多段塞、控压力"调剖工艺,并进行了现场工艺试验。统计2012年吴410区3口典型调剖井,平均注水压力上升1.5MPa,至目前,单井组内油井平均增油已超200t,调剖增油效果良好。同时对调剖失败井进行对比总结分析,为以后堵水工艺提供参考意见。  相似文献   

8.
分子沉积膜驱油效率实验研究   总被引:1,自引:0,他引:1  
通过岩心驱替实验,考察了岩心渗透率(67×10-3~1340×10-3 μm2)、膜剂浓度(500~1500 mg/L)、注入段塞尺寸(宏观和微观条件下)、和膜剂吸附时问(0~22 h)、温度(50~80℃)、膜荆阳离子度(14.6%~25.9%)等因素对水驱后膜剂驱油效率的影响.实验结果表明,膜荆驱油能有效提高原油采收率,岩心渗透率和温度对膜剂驱油效率影响较小,段塞尺寸和膜剂阳离子度对驱油效率有一定的影响,较高的膜剂浓度有利于提高采收率.当膜剂浓度为1500 mg/L,膜剂阳离子度大于24%、膜剂注入体积约为1 PV、吸附时间12 h以上时,可获得较高的原油采收率.  相似文献   

9.
为了提高海上油田的驱油效率、满足海上平台作业要求,通过测定乳液型聚合物溶液和凝胶体系的黏度随时间的变化,得到适合海上油田深部调驱的乳液型聚合物凝胶体系;通过长度为1 m的填砂模型封堵实验和均质岩心驱油实验,研究乳液型聚合物凝胶的封堵性和驱油效果。结果表明,乳液型聚合物的稳定性较好,溶液放置31 d后的黏度保留率为71.15%。由两种酚醛类交联剂和乳液型聚合物组成的聚合物凝胶成胶时间为8 d,成胶黏度为911 mPa·s,稳定性良好。水驱和聚合物驱注入速率为5 m/d时,填砂模型封堵效果相对较好,沿程封堵率均超过90%。岩心驱油实验中,渗透率5000×10~(-3)μm~2岩心的采出程度增幅比渗透率为1000×10~(-3)μm~2和3000×10~(-3)μm~2的岩心高12.46%和3.83%,聚合物凝胶体系可以进入油藏深部实现高渗条件下的深部调驱,改善水驱效果。图4表4参19  相似文献   

10.
对落叶松栲胶高温堵剂的性能进行了研究。该堵剂的典型配方为:栲胶6.0%~8.0%、交联剂6.0%~8.0%、促进剂A 0.5%~1.5%、促进剂B 0~0.4%,pH值8~12。在25℃、51/s条件下堵剂溶液的粘度为2.0~6.0mPa·s,在120℃下,其成胶时间在4.5~24h之间可调。该堵剂能耐250℃高温,但是会脱水20%左右。堵剂的强度随着温度的升高而增强,120℃下堵剂的弹性模量G在25000~60000Pa之间,而250℃下升高至65000~80000Pa。在渗透率为1449.67×10-3μm2岩心封堵试验中,封堵率为99.92%,突破压力梯度为44.30MPa/m;而在渗透率为958.84×10-3μm2、饱和一定量原油的岩心封堵试验中,封堵率为99.42%,突破压力梯度降为14.66MPa/m,这说明该堵剂不但具有良好的封堵效果,而且具有一定的选择性。  相似文献   

11.
魔芋葡甘露聚糖(KGM)是魔芋粉的主要成分,是已知植物胶中黏度最大的天然高分子多糖,韧性强、具有独特的凝胶性能。通过组分用量优选得到了KGM堵剂最佳配方:粗品KGM 6.0 g/L+聚合物HPAM(M=2500×104,HD=25%)1500 mg/L+增强剂1.0%(体积分数)+硫脲100 mg/L。该优化配方堵剂热稳定性良好,在110℃下老化60 d后的胶体强度为G级,成胶时间随温度升高而缩短,在90~120℃的性能十分稳定。岩心封堵实验表明,随着堵剂注入量的增加,岩心封堵率提高,最高可达99%以上。对多孔介质的封堵率随堵后注水速度的增大而减小。该堵剂具有可被驱动性,泵入速度增大则突破压力与突破压力梯度越高。岩心注水冲刷50PV后的封堵率大于90%。KGM堵剂只封堵出水层,不封堵出油层,便于现场应用。图3表5参10  相似文献   

12.
为研究非均质性油藏条件下堵剂的成胶性能,室内使用自主研制的纵向非均质二维长岩心模型和常规的单管与并联填砂管对改性淀粉接枝共聚堵剂进行了研究。结果表明:堵剂配方为5%改性淀粉+5%丙烯酰胺+0.05%交联剂+0.1%引发剂时的注入性良好,对高渗、中渗和低渗填砂管的封堵能力良好,封堵率分别为99.2%、97.1%和91.0%;选择性较好,优先进入高渗透层进行封堵,并随着渗透率级差的增加,注入选择性增强;对长岩心模型水驱形成的大孔道进行了有效的封堵,使得中低渗潜力储层得到充分的动用,高渗、中渗和低渗储层的水驱采收率分别增加2.2%、3.3%和5.6%,最终采收率提高11.1%;耐冲刷能力强。该堵剂成胶性能良好,适用于非均质性稠油油藏。  相似文献   

13.
针对扶余油田低温低渗透裂缝性砂岩油藏的性质,研制了一种适合于该油藏的互穿网络凝胶体系。确定了互穿网络凝胶的最佳配方:互穿网络聚合物IPN浓度2 000 mg/L,交联剂A用量(体积分数,下同)1.00%,交联剂B用量1.00%,粉煤灰用量6.00%。此凝胶在30℃下成胶时间短,老化45 d后成胶强度为G级。岩心封堵实验表明,岩心封堵率最高可达99%以上,突破压力梯度在7.55 MPa/m以上。该凝胶堵剂具有选择性封堵性能,封堵水层、不封堵油层,其吸水剖面改善率分别达99.41%和96.60%。  相似文献   

14.
周泉  李萍  哈俊达  王力  吕杭 《油田化学》2019,36(2):240-244
为了满足聚合物驱后深部定点调堵的需求,进一步挖潜剩余油,研发了一种以相对分子质量2500万的部分水解的阴离子型聚合物、金属离子交联剂、调节剂、缓凝剂、增强剂组合的低初始黏度可控凝胶调堵剂体系,对其性能进行了评价。研究结果表明:用现场回注污水配制的配方为500数1000 mg/L聚合物LH2500+1000数2500mg/L交联剂CYJL+200数500 mg/L调节剂(柠檬酸)+100数150 mg/L缓凝剂(亚硫酸钠)+100数200 mg/L增强剂(多聚磷酸钠)的凝胶初始黏度低,在10 mPa·s以内;成胶时间10数40 d内可控,成胶黏度2000 mPa·s以上。体系耐矿化度可达20000 mg/L,应用pH范围为8数9;体系具有较好的岩心封堵性能,对水测渗透率为0.48数3.9μm~2的岩心封堵率均在99%以上,残余阻力系数为95.6数396.1。三层并联岩心实验结果表明该体系对中、低渗透层的污染少,可以满足现场的封堵要求。图2表7参10  相似文献   

15.
交联聚合物微球分散体系性能研究   总被引:1,自引:0,他引:1  
郑晓宇  张健  孙君  明华  宋丽  杨俊茹 《油田化学》2012,29(2):172-175,180
本文采用反向乳液聚合法合成了交联聚合物微球,研究了该交联聚合物微球分散体系的微球形态、配伍性、封堵性和驱油性能。实验结果表明,交联聚合物微球溶胀10 d后,团聚在一起的聚合物逐渐分开,尺寸在100 200 nm左右。溶胀后的交联聚合物能在短时间内对微孔膜形成有效封堵,并具有较好的耐盐性。多点测压砂管封堵实验结果表明,交联聚合物微球能进入填砂管的中深部,具有一定的深部封堵能力。并联岩心驱油实验结果表明,注入3.0 PV由油田模拟水配制的质量分数为0.04%的交联聚合物微球分散体系,高渗透率岩心(气测渗透率2.0μm2)在水驱(61.61%)基础上提高采收率21.42%;而低渗透率岩心(气测测透率0.5μm2)在水驱采收率为0的基础上提高采收率42.69%。图10表1参6  相似文献   

16.
胜利埕岛浅海油田馆陶组油藏(温度70℃,渗透率1.488~8.046μm2,地层水矿化度5.310~8.346 g/L),水驱已引起油井陆续水淹,为此研制了题示调堵剂。配液用模拟海水矿化度30.7 g/L。所用疏水缔合聚合物NAPs分子量1.092×107,水解度22%,阳离子疏水基摩尔分数0.25%,在海水中0.5小时溶胀,2小时溶解。调堵剂最佳使用配方为(g/L):NAPs 7~11;苯酚0.2~5.0;甲醛液15~25;盐热稳定剂0.10~0.15;增强剂1.0;成胶时间可调。在高渗(6.895~8.821μm2)填砂管内注入NAPs浓度8、10 g/L的配方调堵剂,在70℃反应72小时后水测突破压力为26.21~36.85 MPa/m;在水驱至残余油的两组并联双填砂管内注入0.5 PV NAPs浓度10 g/L的配方调堵剂,在反向注入组(8.062/1.896μm2)调堵剂完全进入高渗管,在正向注入组(6.720/1.923μm2)98%的调堵剂进入高渗管,成胶后继续水驱时高、低渗管吸水量发生反转,最终采收率在反向注入组分别提高3.3%和28.1%,在正向注入组分别提高5.6%和23.7%。因此题示调堵剂可用于目的油藏的调剖、堵水。表6参2。  相似文献   

17.
针对春光油田开发生产中存在的问题,研制了一种耐盐型泡沫凝胶堵剂,并对该堵剂的成胶和封堵性能进行了评价。通过室内实验筛选起泡剂、稳泡剂和交联剂及其质量分数,确定泡沫凝胶堵剂配方为:0.5%GM-1+3 000 mg/L X-2+0.04%交联剂A+0.18%交联剂B+0.12%有机酸。实验表明,在春光油藏地层水矿化度10×10~4mg/L条件下,该堵剂起泡能力良好,成胶性能较好,岩心模拟流动试验注入性好,封堵率达90%以上。  相似文献   

18.
具有近疏远调作用的双液法深部调剖剂LF-1   总被引:2,自引:0,他引:2  
为了封堵中原胡庆油田高压注水井远井地带的高渗层 ,研制了双液法堵剂LF 1。LF 1的A剂为可在水中解离出H 的无机盐溶液 ,B剂为硅酸钠溶液。 10 %A剂溶液对注水井结垢物的溶解率为 9.1%~ 10 .2 % ,加入 0 .2 %缓蚀剂后 85℃下的腐蚀速率降至 0 .10 8mm/a ,缓蚀率 95 %。根据等体积A、B剂溶液生成的沉淀物质量和堆积体积 ,求得A、B剂实用浓度为 10 %、15 %。在此实用浓度下 ,LF 1生成的沉淀物质量和堆积体积远大于对比双液法堵剂 (碳酸钠 /氯化钙、碳酸钠 /硫酸亚铁、硅酸钠 /氯化钙体系 )。注入 10 %A剂溶液 1PV使水泥 /粘土 /氧化钙堵剂封堵的石英砂压实岩心渗透率 (5 .6 7× 10 -3 μm2 )升高 18.2 %。在 85℃下 5支长 6 0mm的岩心注入 1.5PVA剂溶液 /0 .2 5PVB剂溶液 /0 .2 5PVA剂溶液后 ,突破压力为 1.6~ 3.6MPa ,平均 2 .4MPa ,堵水率为 6 6 .8%~76 .2 % ,平均 72 .0 % ,注水 10 0PV后渗透率上升 1.0 7%~ 5 .6 3% ,再在 85℃和注水压力下保持 12 0d后 ,渗透率上升 4 .30 %~ 7.31%。 2 0 0 1年 1~ 9月进行的 18次注水井深部调剖 ,平均处理半径 11.5m ,单井注入剂量 94 8.5m3 ,工艺上完全成功 ,绝大部分对应油井增油减水。给出了 4口注水井封堵前后注水参数的变化。表 8参 1。  相似文献   

19.
所报道的热沉积无机凝胶堵剂,又称地层涂层堵剂,由A、B两液混合而成,黏度25 mPa·s,pH=9,含有轻悬浮无机颗粒与有机添加剂,固体物含量31.0 mg/L,在40℃以上可生成固化物,其耐温性达400℃.pH为9和12时固体物含量相同,pH为2时固体物含量减少.在人造砂岩岩心中注入该堵剂,在90℃反应4小时后测40分钟驱出液体积,结果表明在舍油饱和度相同(2%,20%)的堵塞岩心中,水、油的流动阻力相同,水、油在低(2%)含油饱和度堵塞岩心中的流动阻力大大高于在高(20%)含油饱和度堵塞岩心中的流动阻力.堵塞岩心经100 PV水或油驱替后,渗透率增加幅度很小.该堵剂固化时间约8小时.矿场施工中处理半径一般为1.5~2.0 m.堵水作业中堵剂从套管挤入,调剖作业中堵剂从注汽油管挤入.2008年在辽河锦45、锦25块蒸汽吞吐井用该堵剂实施堵水作业16井次,调剖作业18井次,增油减水效果显著.  相似文献   

20.
FH-10堵剂的研制及在新疆低渗透油田的应用   总被引:1,自引:0,他引:1  
以丙烯酰胺为单体,在引发剂作用下与交联剂和改性剂反应生成强度较高的凝胶堵剂FH-10.确定该堵剂的最佳配方:丙烯酰胺20 g/L、改性剂25 g/L、交联剂800 mg/L、引发剂20~50mg/L.性能测试表明,该堵剂26℃时的黏度为1.1 mPa·s,易泵送易注入,75℃成胶时间≥4 h,反应8 h后的成胶黏度约5 Pa·s,成胶强度大于在用聚丙烯酰胺类强、弱凝胶.在石117储层岩心中,FH-10堵剂、弱凝胶、强凝胶的注入压力分别约0.4、20、9 Mpa,突破压力分别为8、<1、3.5 Mpa,封堵率分别为97.6%、81.3%、93.0%.FH-10堵剂可抗50 g/L CaCl2,形成的凝胶75℃下放置30 d不破胶.现场施工两口井,其中一口井已累计增油3635 t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号