首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
结合温度变化规律和浓度变化规律,研究了丙酮和甲苯混合气体在变压吸附过程中的传质规律,讨论了温度、浓度、竞争吸附对传质区移动的影响。研究表明:温度曲线的变化是传质区移动的反映,变压吸附初期吸附柱内的床层温度随其高度而增加,随吸附进行,温度曲线逐渐趋于重合;变压吸附过程中吸附速率和脱附速率并不相同。吸附阶段丙酮、甲苯浓度均沿床层高度变小;随吸附循环的进行,吸附阶段不同时刻不同床高的甲苯浓度逐渐变大趋于稳定,丙酮浓度逐渐变小趋于稳定。丙酮、甲苯两组分吸附循环中,丙酮为弱选择吸附性物质,其传质区移动快于甲苯。  相似文献   

2.
为了寻求高效的有机废气吸附剂,用氧化石墨还原法制取石墨烯进行吸附。选取挥发性有机气体中的甲苯作为研究对象,用石墨烯作为吸附材料,分别考察了床层高度、吸附温度及甲苯初始质量浓度对石墨烯吸附甲苯性能的影响。结果表明,石墨烯吸附甲苯容量与甲苯初始质量浓度、床层高度、温度成正比。在实验温度25℃、床层高度10mm及气速200mL/min条件下,甲苯吸附量为100mg/g。石墨烯吸附甲苯的动力学过程符合假二级动力学模型,吸附等温线拟合符合Freundlich模型。  相似文献   

3.
用载酸13 X分子筛吸附脱除中国石油化工股份有限公司安庆分公司石脑油中的有机氮化物,浸渍剂为磷酸溶液。结果表明,脱氮后,石脑油有机氮质量分数可降至小于0.7×10-6,脱除率为84.5%;单次循环吸附脱除石脑油中的有机氮时,m(石脑油)/m(吸附剂)为190.3;最佳液相吸附脱氮条件为吸附温度20℃,空速6 h-1;脱附条件为温度200℃,氮气空速60 h-1,脱附时间3 h;先对失活吸附剂脱附,然后用磷酸溶液再生,活性可恢复为新鲜吸附剂的92.3%。  相似文献   

4.
在常温液相状态下,以石油醚为置换剂,甲苯为解吸剂,通过固定床吸附分离形式,采用吸附—置换—脱附—置换循环操作方式进行煤油脱芳的实验研究,考察了吸附剂类型、进料空速、剂油比、置换剂和解吸剂用量等对煤油脱芳效果的影响。实验结果表明:以NaX分子筛为吸附剂,在空速为1.0 h~(-1)、剂油比为2.0的条件下,可将煤油中芳烃含量由10.50%(w)降至0.10%(w)以下。为保证吸附剂循环使用的脱芳效果,置换剂最小用量为吸附剂床层体积的0.8倍,解吸剂最小用量为吸附剂床层体积的0.4倍。  相似文献   

5.
采用负载浸渍法,将活性金属铜引入活性炭孔道内部,并且对其进行N2吸附-脱附及透射电镜表征。使用改性后的AC-2活性炭吸附剂吸附脱除苯模型化合物,当入口苯质量浓度为6.5 g/m3、体积空速为1 000 h-1、吸附温度为20℃时,穿透时间为13 h,吸附量为132 g。经过8个吸附-再生周期,AC-2活性炭吸附剂仍可将固定床吸附器出口苯质量浓度控制在30mg/m3以下。使用改性后的AC-2活性炭吸附剂吸收-吸附脱除石脑油中的VOCs(挥发性有机物),在进气口VOCs质量浓度为100~150 g/m3、体积空速为1 000 h-1、吸附温度为20℃的条件下,其穿透时间为4.5 h。经过4个柴油吸收-吸附-再生周期,AC-2活性炭吸附剂仍维持较稳定的脱VOCs性能。热脱附模型相较于常温脱附模式,更加适用于活性炭吸附剂的脱附再生。  相似文献   

6.
以颗粒状硅酸锆(ZrSiO4)作为载体,通过浸渍的方法将壳聚糖负载其上,制得壳聚糖-ZrSiO4吸附剂。用该吸附剂处理废水中的铅离子(Pb2+),考察了体系pH值、温度、时间等工艺条件对吸附和脱附效果的影响。结果表明,在Pb2+溶液初始质量浓度为5.0 mg/L,pH值为6.0,吸附剂用量为24.0 g/L,吸附温度为30℃,吸附时间为1 h的优化条件下,该吸附剂对溶液中Pb2+的最大吸附率为86.4%,相应其最大吸附容量为180.1μg/g;用去离子水洗涤壳聚糖-ZrSiO4饱和吸附剂,调节脱附体系pH值为2.0,在10℃震荡10 min,该吸附剂对Pb2+的脱附率可达93.5%。  相似文献   

7.
采用吸附分离工艺,以5 A分子筛为吸附剂,氮气为脱附剂,将重整拔头油分离成高纯度的正构烷烃和异构烷烃。结果表明,在吸附温度为180~280℃,进料空速为25~150 h-1的条件下,温度越低,穿透吸附容量越大。吸附分离最佳操作条件为:温度220℃,原料气体空速50 h-1,进料时间25 min,脱附气体空速50 h-1,脱附时间25 min。吸余油中正构烷烃质量分数为3.90%,异戊烷和二甲基戊烷质量分数分别为24.65%,28.21%,辛烷值为91.0;脱附油中正构烷烃质量分数可以达到99.0%以上。  相似文献   

8.
运用Aspen Adsorption软件数值模拟了体积比为3:7的甲烷和氮气组成的低浓度煤层气的脱附吹扫过程,得到了甲烷的脱附吹扫曲线和吸附床层轴向浓度分布,考察了压力、吹扫速率和吸附剂对脱附吹扫过程的影响。结果表明:活性炭作吸附剂、293K、300kPa、流速2×10~(-7)kmol/s条件下,甲烷出口含量模拟值与实验值吻合良好,甲烷的饱和负载量和氮气的初始负载量分别为6.75×10~(-4)kmol/kg和3.65×10~(-4)kmol/kg,脱附吹扫时间为760s时,吸附剂实现完全再生;脱附吹扫时间随压力变小而缩短,吹扫压力为500k Pa、300kPa和100kPa时的甲烷脱附吹扫时间分别为1208s、634s和436s;吹扫速率越大,脱附吹扫曲线越陡峭;活性炭比分子筛的的脱附吹扫时间更短。  相似文献   

9.
采用三氧化二铁(Fe2O3)/黏土铁系吸附剂对生物柴油进行吸附脱酸,考察了吸附时间、吸附温度、吸附剂用量等吸附工艺条件对脱酸效果的影响,并研究了该吸附剂的饱和吸附量和再生性能。结果表明:最佳吸附剂用量为8.69%,吸附温度为54.91℃,吸附时间为2.7 h,在此优化条件下,脱酸率为86.78%;在最佳吸附温度和吸附剂用量下,Fe2O3/黏土吸附脱酸的饱和吸附量为18.5 g/g;以月桂醇聚氧乙烯醚(AEO-3)作脱附剂,吸附脱酸后的Fe2O3/黏土经第1次再生后,脱酸率仅为45.71%,经第2次再生后,无脱酸能力。  相似文献   

10.
重油催化裂化柴油吸附脱氮-加氢精制组合工艺的开发   总被引:2,自引:0,他引:2  
在试验室固定床小型试验装置上.采用自行研制的DNSiAl-004硅铝吸附剂,对碱氮质量分数为100~190μ/g的重油催化裂化柴油进行吸附脱碱氮,吸附剂饱和后用溶剂M进行脱附再生,最后针对脱碱氮柴油进行加氢精制.结果表明:DNSiAl-004吸附剂对柴油中的碱氮具有较高的选择吸附性,在脱碱氮率不小于80%的前提下,吸附剂的碱氮容量为0.45%,单程吸附柴油收率大于99%;在温度40~50℃的范围内,溶剂M能够对饱和吸附剂进行较好的脱附再生,经过40次吸附-脱附后,DNSiAl-004吸附剂的碱氮容量仅下降6.7%,同时溶剂M回收后可循环使用;脱碱氮柴油经过加氢精制后,硫质量分数降到50μg/g以下,达到了欧Ⅳ柴油硫含量指标的要求.  相似文献   

11.
对新型油气回收吸附剂HBY-1的吸附、解吸性能进行了研究。试验结果表明,室温下,在甲苯浓度为10 000μL/L、空速为200~400h-1、解吸时间为2h、解吸温度为22℃时,HBY-1对甲苯的平衡吸附容量为28.0%,解吸速率为23.0g/h,高于活性炭;在油气浓度为140 000μL/L、解吸时间为2h、解吸温度为22℃时,HYB-1的吸附热比活性炭低17.1kJ/mol,而HYB-1的解吸速率为18.0g/h,是活性炭解吸速率的1.5倍,说明HYB-1的安全性和回收性能均优于活性炭。  相似文献   

12.
以超高比表面积活性炭为吸附剂,对天然气的吸附储存性能进行了研究。结果表明,超高比表面积活性炭具有较强的循环使用性能,经180次循环使用后,吸附储存天然气的能力仅下降9%左右。天然气的脱附量(V/mL)与脱附时间(t/s)之间满足函数关系:V=149.7Ln(t)-97.2,天然气脱附速率为:dV/dt=149.7/t;吸附压力P(MPa)与天然气脱附量增加百分率X(%)之间满足乘幂函数关系:X=C×P-n。  相似文献   

13.
流化催化裂化汽油吸附法深度脱硫工艺的研究   总被引:8,自引:5,他引:3  
以臭氧氧化活性炭为吸附剂,对流化催化裂化(FCC)汽油进行吸附脱硫研究,探索了最佳吸附条件和最佳再生条件。实验结果表明,在活性炭颗粒大小为80~100目、吸附温度为80℃、原料液态空速为1.70h-1的最佳吸附条件下,可使初始硫含量为796μg/g的FCC汽油的初始流出液的硫含量降到18μg/g,初始脱硫率达97.7%;在脱附剂为乙醇、再生温度为60℃、脱附剂液态空速为1.70h-1的最佳再生条件下再生活性炭,循环使用3次时仍可使初始流出液的硫含量降到45μg/g,初始脱硫率达94.3%。  相似文献   

14.
活性炭纤维吸附低浓度甲苯废气吸附等温方程的研究   总被引:4,自引:1,他引:3  
在自制吸附器上研究粘胶基活性炭纤维吸附低浓度甲苯废气的特性,通过实验测定活性炭纤维吸附不同浓度甲苯废气的穿透曲线,并运用Origin 6.0 Professional软件计算出不同浓度甲苯废气的平衡吸附量,分别用Freundlich、Langmuir和D-R方程拟合得出吸附平衡关系,并与实验结果进行比较。结果表明,在浓度较低时,Langmuir方程能更好地符合实验结果,而浓度较高时,D-R方程与实验结果吻合得更为理想。  相似文献   

15.
介绍了活性炭纤维的产品性能,阐述了活性炭纤维在酮苯脱蜡装置甲苯与甲乙酮尾气吸附回收的工艺特点.运用活性炭纤维吸附技术回收酮苯尾气中的甲苯和甲乙酮,吸收率达到98%以上,与油吸收-水吸收法相比,酮苯尾气回收效果十分显著.此工艺具有活性炭纤维用量少、设备体积小、全自动控制、能耗低、解吸附速度快、不产生二次污染等优点,有明显的经济效益和环境效益.另外,还探讨了活性炭纤维在酮苯尾气回收应用中存在的问题.  相似文献   

16.
以负载SnO的活性碳纤维催化酯化合成了已二酸二辛酯,考察了反应时间、温度及催化剂用量等因素对合成反应的影响,适宜的工艺条件为:n(己二酸):n(2-乙基己醇)=1:3.3,催化剂1.1%,带水剂甲苯用量6%,反应温度17-175℃,反应时间120 min。在此条件下反应体系的终点酸值和色泽得到合理控制,粗产物不经过中和、水洗和脱色就可得到合格产物,避免了普通酯化工艺造成的废水和废渣污染。  相似文献   

17.
超临界CO_2萃取再生失活Pd/C催化剂   总被引:2,自引:1,他引:1  
对苯甲酸加氢过程中Pd/C催化剂的失活原因进行了分析,研究了利用超临界CO2萃取再生失活Pd/C催化剂的过程,考察了萃取温度、萃取压力、CO2流量、共溶剂种类对Pd/C催化剂再生效果的影响。研究结果表明,超临界CO2萃取可以有效去除Pd/C催化剂表面吸附的有机杂质,恢复Pd/C催化剂的活性。利用超临界CO2萃取再生失活Pd/C催化剂的较佳工艺条件:萃取温度333~353K,萃取压力15~25M Pa,CO2流量(1g催化剂、常温、常压)20mL/h,以甲苯和二氯甲烷混合物为共溶剂。工业试验结果表明,在催化剂处理量320kg、萃取温度353K、萃取压力20M Pa、萃取时间12h、超临界CO2流量1.5t/h、无共溶剂的条件下,失活Pd/C催化剂的活性可达到新鲜Pd/C催化剂活性的80%以上。  相似文献   

18.
以FX-01催化剂烧炭再生本征动力学模型为基础,考虑粒内扩散的影响,建立工业绝热床反应器的烧炭再生模型,并应用正交配置法求解。模拟结果表明:当入口温度一定时,存在一临界空速;当入口气空速一定时,存在一临界入口温度。只有入口温度不超过临界值,且燃气空速高于临界值才能进行安全烧炭。通过对再生方案的分析,选出较优方案为:再生初期:燃气空速为980h-1,入口温度T0=573K,入口氧浓度Y0O2=2%。当烧掉床层40%的炭时,将燃气切换为空气,同时提高入口温度到603K,继续烧炭。按此方案烧炭33h,可使催化剂活性基本得到恢复。  相似文献   

19.
实验研究了JH净化活性炭对甲苯和丙酮混合蒸气在不同温度下的吸附性能,并用DY模型与扩展的Langmuir模型进行了描述。根据扩展的Langmuir吸附等温方程和实验曲线分析了JH净化活性炭对甲苯与丙酮的吸附选择性。结果表明,扩展Langmuir模型结果优于孔填充DY模型。由于JH净化活性炭对甲苯的吸附选择性大于丙酮,因此可用于甲苯和丙酮混合气体的吸附分离,且高的吸附温度和低的进口浓度条件有利于其吸附分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号