首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
以油酸、二乙烯三胺及季铵化试剂为主要原料,二甲苯为携水剂,采用室内溶剂法合成咪唑啉季铵盐缓蚀剂。将合成的咪唑啉季铵盐缓蚀剂分别与亚硫酸钠、异丙醇、硫脲、丙三醇、OP-10进行复配,结果表明,亚硫酸钠、丙三醇、异丙醇、硫脲分别与咪唑啉季铵盐缓蚀剂的协同效果并不理想,而OP-10与咪唑啉季铵盐缓蚀剂的协同效果较好。OP-10与咪唑啉缓蚀剂的复配比为1∶5时,缓蚀率可提高0.3%。  相似文献   

2.
以天然桐油为原料,采用溶剂法合成天然桐油基咪唑啉季铵盐。利用极化曲线、电化学阻抗、扫描电镜等手段对天然桐油基咪唑啉季铵盐的缓蚀性能进行了研究。当缓蚀剂的浓度为2.0 g/L时,在pH值为3.5的盐酸溶液中最大缓释效率达到86.30%。桐油基咪唑啉季铵盐缓蚀剂在A3钢表面发生物理吸附,并且符合Langmuir吸附模型,对A3钢有较好的缓蚀效果。  相似文献   

3.
油田用咪唑啉季铵盐缓蚀剂的合成及性能评价   总被引:2,自引:0,他引:2  
以油酸、二乙烯三胺及季铵化试剂为主要原料,合成了适用于油田的眯唑啉季铵盐缓蚀剂。确定了该缓蚀剂的最佳合成条件:油酸和二乙烯三胺摩尔比为1:1.2,酰胺化反应温度160℃、反应时间1.5h,环化反应温度220℃、反应时间6.5h,季铵化试剂为硫酸二甲酯,其与咪唑啉中间体摩尔比为1:1,季铵化反应温度50℃、反应时间2.5h。性能评价表明,该咪唑啉季铵盐缓蚀剂在模拟油田现场盐水中具有良好的缓蚀性,当与OP-10、SDS、K1分别复配时,均显示良好的协同效应,并且具有较好的水溶性。  相似文献   

4.
采用二乙烯三胺、苯甲酸、油酸为原料,合成两种咪唑啉酰胺,加入氯化苄进行季铵化反应,合成两种酰胺咪唑啉季铵盐缓蚀剂。采用红外光谱扫描,通过对特征峰的分析,验证了合成产物为酰胺咪唑啉季铵盐。通过挂片质量损失试验,测试了两种咪唑啉酰胺季铵盐药剂的缓蚀性能;通过电化学研究了这两种缓蚀剂复配增效剂后随加药浓度变化腐蚀速率及缓蚀率的变化规律。结果表明:油酸酰胺苯甲酸咪唑啉季铵盐缓蚀效果优于苯甲酸酰胺油酸咪唑啉季铵盐;硫脲、丙炔醇对该油酸酰胺苯甲酸咪唑啉季铵盐的缓蚀性能具有增效作用。  相似文献   

5.
咪唑啉季铵盐缓蚀剂的合成及性能评价   总被引:4,自引:0,他引:4  
采用硬脂酸、苯甲酸、月桂酸、二乙烯三胺和三乙烯四胺为原料,合成了多种咪唑啉及咪唑啉季铵盐缓蚀剂,对N80钢在的盐酸中有较好的缓蚀作用,其中合成的咪唑啉季按盐的缓蚀性能更为优异。咪唑啉季铵盐类型缓蚀剂MBT在投加量为0.5%时,在12%HCl(60℃,4h)酸液中,N80钢腐蚀速率为0.692g/(m2.h)。该产品与缓蚀剂复配后得到了缓蚀剂SE-1,缓蚀性能得到进一步提高,加量为2%时,在土酸(150℃,4h)介质中,N80钢片在的腐蚀速率为15.91g/(m2·h)。并用动电位扫描技术,对咪唑啉缓蚀剂的缓蚀性能进行了极化行为研究。  相似文献   

6.
咪唑啉类缓蚀剂的合成及其缓蚀性能评价   总被引:5,自引:0,他引:5  
在一定条件下合成的多种咪唑啉和咪唑啉季铵盐缓蚀剂,对N80钢在12%的盐酸中有较好的缓蚀作用,其中合成的咪唑啉季铵盐的缓蚀性能更为优异。脂肪酸-乙二胺咪唑啉季铵盐在投加量为0.3%时,在12%盐酸(60℃,4小时)酸液中N80钢腐蚀速率已降为3.91g/m~2·h。该产品与缓蚀剂K复配后,缓蚀性能得到进一步提高,可以满足油田酸化作业要求。  相似文献   

7.
酸化用双环咪唑啉季铵盐缓蚀剂的合成与性能评价试验   总被引:1,自引:0,他引:1  
以己二酸、二乙烯三胺为原料合成了双环咪唑啉缓蚀剂JUC,并对其季铵化后得到了适于酸化用的双环咪唑啉季铵盐缓蚀剂JUCI;采用静态挂片失重法对合成的缓蚀剂在酸化条件下的缓蚀性能及与非离子表面活性剂SA-1复配后的缓蚀性能进行了评价研究.结果表明,合成的JUC和JUCI缓蚀剂对N80钢(油管用)在盐酸和土酸体系溶液中有较好的缓蚀作用;JUC和JUCI缓蚀剂中加入少量SA-1后,可增加缓蚀效果;双环咪唑啉季铵盐JUCI缓蚀剂比双环咪唑啉JUC缓蚀剂的缓蚀效果好.  相似文献   

8.
新型咪唑啉缓蚀剂的合成及性能评价   总被引:4,自引:0,他引:4  
以油酸和二乙烯三胺为原料,硫酸二甲酯为季铵化试剂,二甲苯为携水剂,合成了一种新型咪唑啉缓蚀剂。考察了合成条件对目标产物缓蚀性能的影响,确定了该缓蚀剂的最佳合成条件:油酸和二乙烯三胺摩尔比1:1.2,第一步反应温度220℃、反应时间8h;第一步反应中间体与硫酸二甲酯摩尔比1:1.5,第二步反应温度50℃、反应时间3h。利用静态挂片失重法,测定了该缓蚀剂及其与无水亚硫酸钠复配体系在人工模拟盐水中对A3钢的缓蚀效果,并评价了该缓蚀剂的各项性能。结果表明,该缓蚀剂稳定性高、乳化倾向小、溶解分散性好、能有效阻止盐水介质中的腐蚀,与无水亚硫酸钠的复配体系对A3钢具有较强的缓蚀能力。  相似文献   

9.
将合成的十二胺丙炔醇曼尼希碱季铵盐和咪唑啉以最佳的比例制备一种复配缓蚀剂,采用静态失重试验法研究了十二胺丙炔醇曼尼希碱季铵盐、咪唑啉和复配缓蚀剂对X52钢的缓蚀性能。在常压、温度60℃条件下,当模拟溶液中缓蚀剂浓度皆为200 mg/L时,十二胺丙炔醇曼尼希碱季铵盐和咪唑啉的缓蚀效率分别为88.7%和82.7%。将十二胺丙炔醇曼尼希碱季铵盐和咪唑啉以最佳比例1.5:1制备的复配缓蚀剂的缓蚀效率为89.8%,高于十二胺丙炔醇曼尼希碱季铵盐和咪唑啉,证明制备的复配缓蚀剂具有良好的协同效应。在60℃、高H2S/CO2分压条件下,该复配缓蚀剂仍然对X52钢具有良好的缓蚀效果,也说明该复配缓蚀剂可以作为高H2S/CO2分压条件下X52钢的缓蚀剂。  相似文献   

10.
2-氨乙基十七烯基咪唑啉缓蚀性能评价   总被引:3,自引:0,他引:3  
实验以二乙烯三胺和油酸为原料,经升温脱水合成咪唑啉缓蚀剂。以正交试验法和静态失重法研究了以油酸和二乙烯三胺为反应物、二甲苯为携水剂合成咪唑啉缓蚀剂时在模拟采出水中其反应物配比、合成温度、合成反应时间对咪唑啉缓蚀剂缓蚀性能的影响。经红外光谱、咪唑啉缓蚀性能实验表明,其最佳合成反应条件为:n(油酸):n(二乙烯三胺)=1.0:1.0、合成温度为170℃,反应时间为8 h,此时缓蚀效率最佳达95%;实验室评价结果表明:该种缓蚀剂的最佳使用温度为50℃,当质量浓度为250 mg/L时缓蚀率可达96%;腐蚀试片腐蚀形貌分析可知,该种缓蚀剂能抑制点蚀;通过添加不同浓度缓蚀剂电化学曲线实验表明,该种缓蚀剂为混合型缓蚀剂。  相似文献   

11.
为了解决塔里木油田污水运输管网的腐蚀问题,合成了3种咪唑啉季铵盐缓蚀剂,在油田模拟水中,利用静态挂片质量损失法和电化学极化曲线法测试了3种缓蚀剂的缓蚀性能,并初步探讨了咪唑啉类缓蚀剂的缓蚀机理。试验结果表明:在油田模拟水中,月桂酸咪唑啉季铵盐缓蚀剂的缓蚀效果最好;按不同比例复配缓蚀剂的缓蚀效果更好,苯甲酸咪唑啉和月桂酸咪唑啉复配缓蚀剂添加量为600 mg/L时缓蚀效率可达97.31%。极化曲线研究表明:在盐酸介质中添加苯甲酸季铵盐缓蚀剂可使自腐蚀电位正移,对阳极反应有较强抑制作用;加入油酸季铵盐缓蚀剂和月桂酸季铵盐缓蚀剂则使得自腐蚀电位负移,对阴极反应有较强抑制作用。  相似文献   

12.
咪唑啉类缓蚀剂因低毒、环保、高效,被广泛应用在油田防腐中。为解决咪唑啉类缓蚀剂在高温、高矿化度下成膜性差、缓蚀效果不佳的问题,以价格低廉的油酸、二乙烯三胺、二氯甲烷为原料合成咪唑啉季铵盐,再接以硫脲基合成了硫脲基咪唑啉季铵盐S-WM,在90℃下采用电化学和失重法在油田模拟水中评价S-WM的缓蚀性能。研究表明,缓蚀剂S-WM的缓蚀性能随使用浓度的增大而增大,在90℃下,在矿化度432.1 g/L的模拟水中添加1000 mg/L缓蚀剂S-WM,缓蚀效率可达90%以上。缓蚀剂S-WM是抑制阳极为主的缓蚀剂,通过物理及化学吸附在金属表面形成了一层保护膜,可有效抑制高温、高矿化度工况条件下金属的腐蚀,对金属起到良好的保护作用。图12表2参22  相似文献   

13.
以油酸与三乙烯四胺或四乙烯五胺为原料、甲苯为携水剂,控制不同的酸胺摩尔比,合成出一系列单环或双环油酸基咪唑啉类缓蚀剂,通过元素分析法和红外光谱法对产品进行了结构表征,并利用静态失重法考察了咪唑啉环数对缓蚀剂缓蚀性能的影响.结果表明,当酸胺摩尔比为1.0:1.1时,反应产物为单环咪唑啉衍生物;当酸胺摩尔比为2.0:1.1时,形成双环咪唑啉衍生物;用油酸与四乙烯五胺摩尔比为1.0:1.1合成的单环油酸基咪唑啉作缓蚀剂,当其添加量为6 mg/L时,缓蚀率可达99%以上.  相似文献   

14.
为获得缓蚀性能优良的双子咪唑啉季铵盐缓蚀剂,以3种不同的胺类化合物与环氧氯丙烷和硫脲为原料,合成了3种双子咪唑啉季铵盐缓蚀剂(甲硝唑双子季铵盐G1、不对称咪唑啉季铵盐G2和双咪唑啉季铵盐G3),采用化学浸泡失重法、电化学极化曲线及电化学阻抗谱(EIS)技术研究了3种缓蚀剂对X52钢在某气井采出水(矿化度34330 mg/L)介质中的缓蚀行为,考察了缓蚀剂浓度对缓蚀效率的影响,分析了双子季铵盐缓蚀剂作用机理。结果表明,缓蚀剂G1和G2为非对称结构,缓蚀剂G3为对称结构。3种缓蚀剂均表现出优异的缓蚀性能。在76℃下,随着3种缓蚀剂浓度的增加,X52钢的腐蚀速率显著降低,缓蚀效率增加。3种缓蚀剂缓蚀能力从强到弱的顺序为G3G2G1。3种缓蚀剂在X52钢表面的吸附缓蚀作用均满足Langmuir等温吸附曲线,吸附作用为物理吸附和化学吸附协同作用的混合型吸附模式。3种双子季铵盐缓蚀剂均为阳极抑制为主的混合型缓蚀剂,其在X52钢表面的成膜作用对双电层的影响较大。由于3种缓蚀剂分子结构及对称性的差异,影响了吸附过程中X52钢表面的覆盖度,导致了三者成膜行为和缓蚀性能的不同。图12表2参23  相似文献   

15.
油酸咪唑啉缓蚀剂合成条件的优选设计   总被引:1,自引:0,他引:1  
以油酸和二乙烯三胺为原料合成了油酸咪唑啉,考察了原料配比、反应温度、反应时间以及催化剂对油酸咪唑啉缓蚀剂缓蚀性能的影响。确定最佳合成条件为:油酸和二乙烯三胺摩尔比为1:1.2,反应温度为180℃,反应时间为8h,催化剂为活性氧化铝,合成的油酸咪唑啉产品的缓蚀率达到89.3%。  相似文献   

16.
以酸值(KOH)为190 mg/g的环烷酸为原料与多亚乙基多胺反应合成了环烷基咪唑啉中间体,再用硫酸二乙酯对该中间体进行季铵化,制得了水溶性的环烷基咪唑啉季铵盐缓蚀剂。较佳合成条件为:第一步,环烷酸/二乙烯三胺(摩尔比)=1:(1.2~1.4),催化剂H_3BO_3用量为环烷酸用量的0.3%~0.5%,室温~240℃阶梯升温方式;第二步,中间体/硫酸二乙酯(摩尔比)=1:(1.4~1.6),以异丙醇为溶剂,反应温度50℃,反应时间2 h。用失重法测出在1.000 g/L HCl+1.000 g/L H_2S腐蚀介质中对A3钢的缓蚀率大于85%。  相似文献   

17.
三苯环咪唑啉季铵盐的合成与性能   总被引:1,自引:0,他引:1  
以苯甲酸、三乙烯四胺为原料,经酰胺化和环化脱水合成了含2个苯环的咪唑啉中间体,再用氯化苄进行季铵化,制备了水溶性的三苯环咪唑啉季铵盐缓蚀剂。用静态失重法测定了该缓蚀剂的缓蚀性能,用量在1.0%(质量比)时,缓蚀率达到99%以上。研究了合成产物与碘离子复配的性能,并与其他缓蚀剂的缓蚀性能进行了比较,结果表明该合成缓蚀剂及其复配产物的缓蚀性能优良。  相似文献   

18.
 以有机酸或脂肪酸甲酯和二乙烯三胺或三乙烯四胺、四乙烯五胺为原料、甲苯为携水剂,制备了一系列单环咪唑啉类缓蚀剂;采用静态失重法考察了单环咪唑啉分子中的亲水基团结构、疏水基团结构对单环咪唑啉类缓蚀剂缓蚀性能的影响。结果表明,咪唑啉分子中亲水基团碳链变长、氮原子个数增加,缓蚀剂对A3碳钢的缓蚀率增加;分子中疏水基团碳链变短时, 对A3碳钢的缓蚀率降低, 当碳原子个数少于12时,缓蚀率明显降低;疏水基团为体积较大的脂环基团时或混合的脂肪酸基团,该缓蚀剂都有很强的缓蚀作用,且能有效抑制氢鼓泡。油酸与四乙烯五胺合成的油酸基单环咪唑啉用量为6mg/L时, 对A3碳钢的缓蚀率可达99%,环烷酸与四乙烯五胺合成的环烷基单环咪唑啉用量为4 mg/L时, 对A3碳钢的缓蚀率可达98%;混合脂肪酸甲酯与四乙烯五胺合成的脂肪酸基单环咪唑啉用量为6 mg/L时,对A3碳钢的缓蚀率可达97%以上,且都具有很好的抑制氢鼓泡性能。  相似文献   

19.
单环咪唑啉衍生物分子结构对其缓蚀性能的影响   总被引:2,自引:0,他引:2  
以有机酸或脂肪酸甲酯和二乙烯三胺或三乙烯四胺、四乙烯五胺为原料、甲苯为携水剂,制备了一系列单环咪唑啉类缓蚀剂;采用静态失重法考察了单环咪唑啉分子中的亲水基团结构、疏水基团结构对单环咪唑啉类缓蚀剂缓蚀性能的影响.结果表明,咪唑啉分子中亲水基团碳链变长、氮原子个数增加,缓蚀剂对A3碳钢的缓蚀率增加;分子中疏水基团碳链变短时,对A3碳钢的缓蚀率降低,当碳原子个数少于12时,缓蚀率明显降低;疏水基团为体积较大的脂环基团或混合的脂肪酸基团时,该缓蚀剂都具有很强的缓蚀作用,且能有效抑制氢鼓泡.油酸与四乙烯五胺合成的油酸基单环咪唑啉用量为6 mg/L时,对A3碳钢的缓蚀率可达99%;环烷酸与四乙烯五胺合成的环烷基单环咪唑啉用量为4 mg/L时,对A3碳钢的缓蚀率可达98%;混合脂肪酸甲酯与四乙烯五胺合成的脂肪酸基单环眯唑啉用量为6 mg/L时,对A3碳钢的缓蚀率可达97%以上,且都具有很好的抑制氢鼓泡性能.  相似文献   

20.
以1,4-二溴丁烷为联接剂,油酸、二乙烯三胺为亲水亲油基团的初始原料合成了双子咪唑啉季铵盐DTM.利用红外光谱对产品的结构进行表征,用静态失重法、动电位扫描技术,测定了合成的双子咪唑啉季铵盐在不同加量下在8%盐酸介质中对Q235铜腐蚀的缓蚀效率,用静态溶蜡法测试了其清蜡速率.结果表明:该双子咪唑啉季铵盐在8%盐酸介质中对Q235钢具有较强的缓蚀性能,缓蚀效率可达90.69%,且具有一定的清蜡作用,单一使用DTM的清蜡速率为0.046 g/min,与KBr、异丙醇按体积比为2∶1∶1复配后清蜡速率可达0.115 g/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号