首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
通过对BA表面活性剂复配驱油体系的界面张力和驱油效果的研究表明,单独使用BA体系降低界面张力的能力较低,且达到超低界面张力所需的Na2CO3质量浓度范围较窄;BA/异丙醇/NP表面活性剂复配体系(BF-2)降低原油界面张力的能力最优,对Na2CO3浓度适应范围较宽.模拟驱油实验表明,复配体系(BF-2)可增加原油采收率18%.在此基础上,对复配表面活性剂超低界面张力的作用机理进行了探讨.  相似文献   

2.
为深化油膜驱替机理认识,开展油膜驱替实验。以综合反映乳化速度和乳化量的乳化系数量化表征油水乳化能力。针对实验用低黏和中黏原油,筛选出具有强乳化能力-超低界面张力、强乳化能力-低界面张力和弱乳化能力-超低界面张力3种不同性质的驱油剂,并进行玻璃棒束油膜驱替实验。实验结果表明,对于低黏原油,乳化系数分别为0.667和0.706的强乳化能力驱油剂,不论其界面张力是否达到超低,其驱替效率都约为90%,而乳化系数为0.244的弱乳化能力-超低界面张力驱油剂的驱替效率不足70%;对于中黏原油,乳化系数分别为0.534和0.602的强乳化能力驱油剂,不论其界面张力是否达到超低,其驱替效率都约为83%,而乳化系数为0.258的弱乳化能力-超低界面张力驱油剂的驱替效率不足65%。研究结果表明,油水乳化能力是对油膜驱替起决定作用的性能指标。  相似文献   

3.
合成了壬基酚聚氧丙烯醚硫酸盐(NPPS)表面活性剂。以NaCl质量分数0.5%的盐水为模拟地层水,分别配制了NPPS、Na_2CO_3及Na_2CO_3-NPPS复配物与桩西原油的混合体系,测定了体系的油-水动态界面张力。结果表明,单独使用Na_2CO_3或NPPS都无法使盐水-桩西原油体系的油-水界面张力降到0.01 mN/m以下。采用NPPS与Na_2CO_3复配,协同效应明显,当体系中Na_2CO_3质量分数大于0.35%时,仅需质量分数0.0025%的NPPS,体系中油-水界面张力即可以降至10~(-4)mN/m以下。  相似文献   

4.
表面活性剂驱是高温高盐油藏提高原油采收率的重要技术措施,但其乳化作用对提高采收率的影响并未受到足够重视。为了分析濮城油田高温高盐油藏表面活性剂驱乳化作用对提高采收率的影响,通过对表面活性剂降低油水界面张力的性能评价,优选出2种表面活性剂YD-G1和SHY-1,用高矿化度的濮城油田现场注入水配制质量分数为0.3%的溶液,将其放入120℃恒温箱30 d后,油水界面张力仍能达到10-3mN/m的超低数量级,表明2种表面活性剂均具有良好的耐温抗盐性能。将2种表面活性剂与濮城油田脱水脱气原油配制成乳状液,在同等质量分数下YD-G1乳状液的析水率低于SHY-1,且液滴的平均粒径也更小,表明YD-G1溶液比SHY-1溶液的乳化能力强。驱油实验结果表明,YD-G1溶液比SHY-1溶液的驱油效果更佳,表明乳化作用是提高采收率的关键因素之一。通过室内实验优化设计,确定YD-G1溶液的最佳注入量为0.5倍孔隙体积,最佳注入质量分数为0.3%。  相似文献   

5.
为深入认识二元驱油体系乳化能力和界面张力对驱油效果的影响规律,评估了7类乳化指数介于0数0.38之间、与原油界面张力在10-3数10 m N/m之间的二元复合驱油体系(a:0.3%KPS+0.1%HPAM;b:0.5%司盘/0.5%吐温+0.1%HPAM;c:0.3%ZS+0.1%HPAM;d:0.3%YC;e:0.3%HPS+0.1%HPAM;f:0.3%SP+0.1%HPAM;g:0.3%ZS+0.1%HPAM+0.4%Na2CO3)的动态乳化特性、动态界面张力与驱油效果的内在关联性。乳化特征分为5种类型:不乳化(体系f)、乳化反转(体系e)、前程乳化(a)、后程乳化(体系d)、全程乳化(体系b、c和g);界面张力特性分为7种类型:"L"型(体系a)、"—"型(体系b)、"浅碟"型(体系c)、"G"型(体系d)、"V"型(体系e)、"\"型(体系f)、"深碗"型(体系g)。岩心驱油实验表明:驱油剂的乳化能力愈强,则二次水驱后的采收率愈高。不乳化的"\"型体系(体系f)、全程乳化的"浅碟"型体系(体系c)、后程乳化的"G"型体系(体系d),二次水驱采收率分别为0.36%、4.25%和0%,体现了乳化对流度控制和界面张力对毛细管数效应的交织影响。通过对比聚合物驱和二元驱后的岩心剖面发现,二元驱后岩心中残余油分布呈"白斑"状,归因于不合理的段塞配置,使界面张力和乳化作用不足以抵消流度失控对采收率影响所致。在二元复合驱技术研究中,应优选具有超低界面张力和全程乳化能力的驱油体系,并重视驱油过程中的流度控制。图8表2参16  相似文献   

6.
王欢  由庆  韩坤  刘逸飞  方吉超 《油田化学》2018,35(2):302-307
针对现场压裂返排液中部分单一体系再利用效果不明显的问题,通过考虑阴、阳离子表面活性剂复配具有协同效应的特点,构建了一种基于清洁压裂液返排液的表面活性剂复配驱油体系,通过分析体系降低界面张力性能、乳化性能,优选了最佳的复配体系配方0.2%RSH-2+0.012%AOS,并评价了该复配驱油体系提高采收率效果。结果表明,纯返排液体系在质量分数0.02%~0.5%范围内仅可将油水界面张力降低至10-1m N/m数量级,而0.2%RSH-2+0.012%AOS复配体系可降低油水界面张力至10-3m N/m超低数量级;同时,该复配体系乳化性能优良,油水比1∶1的乳状液在静置10 h后的析水率仅30%。该复配体系在渗透率0.0025μm~2的岩心中吸附性能优良,注入124.5 PV时吸附达到动态饱和,动态吸附量为7.52 mg/g,水驱后表面活性剂的滞留量只相当于动态饱和吸附量的1/4~1/3。该复配驱油体系具有较强的提高采收率能力,在水驱基础上可提高采收率11.8%,能满足低渗透油藏压裂后进一步提高采收率的要求。  相似文献   

7.
孤岛油田调驱试验中高效驱油剂的研究   总被引:3,自引:0,他引:3  
用绘制界面张力等值图的方法,对两种石油磺酸盐复配结果进行了优化,筛选出可与孤岛油田原油产生最低平衡油水界面张力的石油磺酸盐配方(0.25%KPS+0.22%APS),并通过室内驱油试验验证了配方的驱油能力。结果表明,将不同来源的性质和结构互补的两种石油磺酸盐进行复配,可与原油产生超低界面张力(3.4×10~(-4)mN/m)。同时证实聚合物的存在不影响油水界面张力平衡值,只延缓油水界面张力达到平衡的时间。注入0.3倍孔隙体积的高效驱油剂,能提高原油采收率17%;在聚合物驱后注入时间越早,最终原油采收率就越高。  相似文献   

8.
为了研究乳化降黏驱油剂对不同渗透率的水驱普通稠油油藏的驱油效率和孔隙尺度增效机理,选取了烷基酚聚氧乙烯醚(J1)、α-烯基磺酸盐类表面活性剂(J2)、十二烷基羟磺基甜菜碱(J3)、J3与烷基酚聚氧乙烯醚羧酸盐复配表面活性剂(J4)作为驱油剂,开展了4种驱油剂一维驱油和微观驱油模拟实验,明确了乳化降黏驱油剂在孔隙尺度的致效机理。结果表明,降低界面张力对提高驱油效率的作用大于提高乳化降黏率。在油藏条件下,乳化降黏驱油剂需要依靠乳化降黏和降低界面张力的协同增效作用,才能大幅提高驱油效率。乳化降黏驱油剂的乳化能力越强、油水界面张力越低,驱油效率增幅越大。当化学剂乳化降黏率达到95%时,油水界面张力从10-1mN/m每降低1个数量级,化学剂在高渗透和低渗透岩心中的驱油效率依次提高约10.0%和7.8%。乳化降黏驱油剂注入初期通过降低界面张力,使得高渗透岩心和低渗透岩心中的驱替压力分别为水驱注入压力的1/2和1/3,从而提高注入能力。注入后期大块的原油被乳化形成大量不同尺寸的油滴,增强原油流动性,提高驱油效率。乳化形成的界面相对稳定的稠油油滴,能暂堵岩石的喉道和大块稠油与岩石...  相似文献   

9.
表面活性剂驱油性能评价及其在低渗透油田的应用   总被引:1,自引:0,他引:1  
结合低渗透油田储层和化学驱油技术特点,考察了双子型表面活性剂驱油剂YC-2 表界面活性、乳化能力及驱油效果。实验结果表明,该驱油剂在浓度为3000mg/L时的表面张力可以达到30mN/m左右,与原油间的界面张力可以达到10-3mN/m超低数量级,并且对NaCl和CaCl2 体现出较强的抗盐能力;表面活性剂YC-2 溶液/原油乳液体系析水快,有利于产出液的破乳。驱油实验结果表明,浓度为3000mg/L的表面活性剂YC-2 溶液在气测渗透率为0.3541× 10-3μm2岩心水驱(采收率50%)基础上可进一步提高采收率15% 以上;该表面活性剂适用于低渗透油层驱油,随着岩心渗透率的提高,表面活性剂驱油效率降低。该驱油剂产品已在延长油田青化砭、瓦窑堡、青平川等采油厂应用,取得了显著的驱油效果。  相似文献   

10.
为了探索聚合物驱后油藏提高采收率的新技术,开展了超低界面张力胜利石油磺酸盐泡沫复合驱研究.通过大量实验筛选了胜利石油磺酸盐与不同种类表面活性剂复配后的泡沫性能和界面性能,得到了既具有良好的泡沫性能,又具有超低界面张力的复合体系,其配方为质量分数为O.15%的SLPS+质量分数为0.35%的6号起泡剂,其总质量分数为0.5%,界面张力达到了1.07x10<'-3>mN/m,发泡体积为320 mL,泡沫半衰期为120 min,耐温抗老化能力和抗盐能力均较强.油藏条件下的物理模拟驱替实验结果表明,超低界面张力胜利石油磺酸盐泡沫复合驱可在聚合物驱后提高采收率16%,证实该体系具有大幅度地提高聚合物驱后原油采收率的能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号