首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   3篇
  国内免费   1篇
化学工业   4篇
石油天然气   27篇
  2024年   3篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
针对胜利油田稠油油藏地质特点及开发难点,重点介绍了中深层特超稠油油藏、浅薄层超稠油油藏、敏感性稠油油藏和低渗透稠油油藏等复杂稠油油藏的开发技术,并对其提高采收率机理和现场应用效果进行了总结概括。在此基础上,根据目前研究进展指出了稠油热采开发技术的发展方向,重点介绍了超深层低渗稠油和浅薄层特超稠油的开发技术及其应用。  相似文献   
2.
水平井蒸汽吞吐经济技术界限   总被引:4,自引:3,他引:1  
利用水平井蒸汽吞吐开发薄层、超稠油以及具有边底水等复杂条件的稠油油藏具有较好的优势,但是水平井投资大,风险高,研究水平井蒸汽吞吐经济技术界限十分必要.基于油藏数值模拟和动态经济评价方法,研究了无边底水、边水以及底水3类稠油油藏水平井蒸汽吞吐的油层有效厚度界限、油价边界值以及地面原油粘度界限.底水稠油油藏含水率上升最快,开发效果最差,因此经济技术界限也最为苛刻.当油价为50美元/bb1时,地面原油粘度为10 000 mPa·8的无边底水、边水以及底水稠油油藏进行水平井蒸汽吞吐开发的油层有效厚度界限分别为2.7,2.9和13.8 m.建立不同油价下的经济技术界限图版以及定量关系式,便于根据油价波动动态地指导不同类型稠油油藏水平井蒸汽吞吐经济开发.  相似文献   
3.
稠油的储量远超常规石油的储量,但因稠油黏度大和密度大的特点而难以开采,高效经济开发稠油已成为石油领域的研究重点。热复合开采技术是目前高效开发稠油油藏的关键技术,其中多元热复合流体的相态特征是稠油油藏开采流程设计与评价的关键。为此,从热复合开采技术中的混合气体系和稠油-气体系2 个方面,系统地阐述了多元热复合流体相态的实验和理论研究现状。对于混合气体系相态,多采用静态法进行实验测试,使用状态方程结合混合规则进行理论预测,CO2,N2,H2O和CH4等常见气体分子组成的二元体系的相态测试趋于成熟,但缺少多元体系的测试数据与预测模型;对于稠油-气体系相态,总结了一般性实验流程与近年实验结果,提出一种加速油气相平衡的新型实验装置构想,指出目前理论预测在气体种类、注气量、气体扩散模型、二元相互作用系数等方面的不足。进而对多元热复合流体相态研究提出展望,以期促进热复合开采技术进一步的机理研究与参数优化。  相似文献   
4.
普通稠油乳化降黏驱是表面活性剂驱和乳状液驱的综合过程,既包含表面活性剂的降低界面张力作用,又包含乳状液的调驱作用。为此,采用微观物理模拟可视化研究多孔介质中乳状液的形成机制和运移特征,利用天然露头长岩心并联驱替实验分别进行水驱+乳化降黏驱和直接乳化降黏驱实验,进一步验证乳化降黏驱渗流特征,对比分析乳化降黏驱的驱油效果。实验结果表明,乳化降黏驱在剪切和降低界面张力作用下原位形成乳状液,形成的乳状液通过卡封、架桥和吸附滞留3 种封堵模式导致驱替介质的频繁绕流改道,起到扩大波及范围及提高驱油效率的作用。乳状液运移过程中与多孔介质相互作用,呈三快三慢的渗流特征。由此导致的渗滤作用,使乳状液分布沿着渗流路径和驱替倍数增加呈规律性变化。对比不同注入方式的岩心并联驱替实验结果,发现直接乳化降黏 驱比水驱的启动压力低(分别为0.57 和1.52 MPa),水驱后进行乳化降黏驱的注入压力由0.37 MPa 升至1.17 MPa。随着乳化降黏剂溶液的注入,驱替压力波动式上升直至平衡。相同注入量下,直接乳化降黏驱比水驱+乳化降黏的驱油效率增加了16.69%,进一步证实乳化降黏驱扩大波及范围和提高驱油效率的有效性。  相似文献   
5.
低油价形势下改善稠油热采开发效果对策研究   总被引:1,自引:0,他引:1  
针对胜利油田边底水能量强、原油黏度高、油层厚度薄、储层物性差、强水敏等油藏特征,以及稠油油藏热采开发成本高的特点,分析了当前低油价形势下稠油热采无效直井的治理对策。通过研究,提出了强边水油藏一线井提液二线井调剖、优化注汽参数、组合吞吐、分层注汽和氮气补充地层能量等技术措施,有针对性地解决了高含水井、无效益井的问题。现场应用表明,该系列技术对策有效提高了热采直井的开发效果,取得了良好的经济效益。  相似文献   
6.
与稀油注CO2提高采收率机理不同,CO2与稠油无法达到混相,因此影响其开发效果的主要因素差别很大,特别是在热化学复合采油过程中,注入的CO2主要发挥隔热、降黏、增能的作用。为了进一步研究不同因素对稠油油藏注CO2驱替效果的影响,在稠油样品物性分析的基础上,利用正交实验方法研究了原油黏度、温度、压力和渗透率对稠油油藏注CO2提高采收率的影响。温度对采收率影响最大,其他因素由大到小依次为:渗透率、压力、油样类型。根据实验结论及认识,综合考虑地层温度、油藏渗透率等因素,在胜利油田开展了稠油油藏注CO2吞吐提高采收率矿场试验。从矿场实际生产结果来看,油藏温度增加以及油藏渗透率提高,都有利于注CO2吞吐开发,都能够有效提高油井产量。   相似文献   
7.
春风油田作为中国石化"十二五"期间唯一投入整体开发的五千万吨级储量油田,开发伊始即确立了用5年时间建成百万吨原油生产基地的战略目标。针对浅薄层超稠油油藏高效开发缺乏有效的储层描述方法、开发方式、工程技术以及管理体系等难题,围绕"三新三高"模式,开展针对性的系统攻关,创新配套了7项关键技术,突破了2m浅薄储层精细预测、高效热力复合采油技术,解决了有效动用难题;配套了水平井防砂免钻塞钻完井一体化、注汽水平泵采油一体化技术,解决了高效开发难题;完善了高干度循环流化床环保锅炉、产出水低温多效机械压缩蒸发技术,实现了绿色低碳发展;构建了智能油田高效管理运行体系,大幅度提高了劳动生产率,降低了开发成本。春风油田共动用地质储量近5 000万吨,2015—2018年连续4年稳产超过100万吨,产能建设投资及单位完全成本降低了1/3左右,在产生了巨大经济社会效益的同时,形成的关键技术丰富了稠油开发理论与技术,并已推广应用到新疆、河南以及胜利东部等同类型油田,支撑了低品位超稠油油藏的规模效益开发。  相似文献   
8.
低含油饱和度特稠油油藏的油水关系一般较为复杂,针对该类油藏开展油水分布规律研究是可动用储量评价与开发的基础。应用测井、岩心分析及开发动态等资料对孤岛油田东区馆6开展储层含油性评价及油水分布特征研究,认为其为油水关系复杂的低含油饱和度特稠油油藏。其油气成藏机制为:以重力、浮力为主的弱成藏动力难以排驱较小喉道孔隙中的原生水,致使河道边缘、河间滩地等物性较差的砂体含油饱和度较低;油气成藏后,孤北断层剧烈活动,致使其附近区域的地面原油密度超过1.01 g/cm3,具有一定长度的连续油柱足以克服毛细管力排出孔隙,聚集于构造低部位,形成油水倒置现象。以油藏成因机制研究为指导,根据油水分布特征及控制因素,将孤岛油田东区馆6低含油饱和度特稠油油藏的油水分布模式划分为4种类型,分别为岩性控制的Ⅰ类、构造控制的Ⅱ类、构造和岩性双重控制的Ⅲ类、油水密度分异控制的Ⅳ类,并制定了差异化的开发策略,进而实现储量评价及有效动用。  相似文献   
9.
胜利油田稠油资源丰富,大部分稠油油藏埋藏深、边底水活跃,油藏压力难以降低到5 MPa,矿场实施的常规蒸汽驱井底注汽干度为30%左右,提高采收率幅度不明显。为改善该类稠油油藏蒸汽驱开发效果,基于高干度注汽技术的发展,以孤岛油田中二北Ng5稠油油藏为原型,开展7 MPa压力条件下二维纵向蒸汽驱物理模拟实验,监测分析注汽干度分别为10%,30%,50%的蒸汽驱过程中蒸汽腔的形成和发育状况,研究注汽干度对深层稠油油藏蒸汽驱开发指标的影响规律。实验结果表明:注汽干度对深层稠油蒸汽驱开采效果影响明显,提高注汽干度,地下蒸汽腔形成时间缩短,蒸汽腔扩展距离变大,蒸汽驱结束时间变长,最终采收率明显提高;7 MPa油藏压力条件下,蒸汽驱的蒸汽干度至少应大于50%。井底注汽干度由30%提高到50%可增加胜利油田深层稠油油藏蒸汽驱有效动用储量1.32×108t。  相似文献   
10.
针对超稠油油藏热化学驱开发过程中不同温度区域内的油水渗流特征不明的问题,利用微观可视化实验和一维物理模拟实验,定量研究了不同温度下热水和驱油剂对驱油效率的影响及相对渗透率的变化规律,分析了热水和驱油剂驱油的致效机理和交互作用。实验结果表明:温度为70℃时,高温驱油剂驱的油相相对渗透率增大,水相相对渗透率变化较小;温度为150℃时,热水和驱油剂的协同增效作用更显著,热水驱转高温驱油剂驱和直接高温驱油剂驱的油相、水相相对渗透率均明显增大;温度超过200℃后,驱油剂在高温限制下驱油作用减弱,热水对驱油效率的提升大幅增加。研究表明:不同温度下,热水驱和高温驱油剂驱均可提高驱油效率;随着温度升高,热水对提高驱油效率的作用不断增大,驱油剂对驱油效率的贡献先增大后减小;热化学驱通过热水、驱油剂在不同温度区域的接替驱油和协同作用,能够实现超稠油油藏效益开发。该研究可为热化学驱提高超稠油油藏采收率提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号