首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为了达到较理想的压裂效果,现场施工会泵注携带支撑剂的压裂液进入地层,研究含砂压裂液的流变规律可以为压裂液在管道和裂缝中的携砂能力预测提供更加准确的理论依据。将压裂液和支撑剂看作整体进行流变实验,研究混合流体表观黏度随剪切速率变化的规律和机理。含砂压裂液流变实验结果显示,压裂液在加入支撑剂后,在一定剪切条件下黏度低于压裂液本身黏度,另外实验还观察到含砂压裂液表观黏度随剪切强度的变化呈现先降低后升高的“V”形趋势,这是由于固液混合流体的内部结构变化与支撑剂颗粒扰动共同作用的结果。含砂压裂液特有的流变行为同样受到支撑剂浓度、粒径和液体温度等因素的影响。强剪切条件下颗粒碰撞作用明显,含砂压裂液表观黏度随浓度增大而增大,弱剪切条件下,含砂压裂液由于支撑剂造成的附加剪切破坏,表观黏度随浓度增加会先下降后升高。并且含砂压裂液黏度与颗粒粒径以及流体温度呈现反相关关系。   相似文献   

2.
含纤维的超低浓度稠化剂压裂液的研究   总被引:1,自引:0,他引:1  
川西地区所用压裂液稠化剂含有水不溶物,压裂液破胶不彻底,导致滞留地层的残渣较多,严重损害储层,降低了储层改造的效果。通过实验研究得出,纤维在压裂液中具有一定的辅助携砂作用,初步探讨了纤维的携砂机理,进而以川西地区中浅层常规压裂液为基础,配制出了稠化剂浓度为0.2%、纤维加量为0.7%的超低浓度稠化剂压裂液,该压裂液携砂性能好,残渣量较少,储层损害小,现场应用取得成功,川孝270井用该压裂液对储层改造后获得天然气产量为8000m3/d,增产效果显著。  相似文献   

3.
压裂液的携砂性能优劣直接影响着支撑剂在裂缝中的输送铺置效果及压后裂缝的有效导流能力。研制了“XS-I型”压裂液悬砂及支撑剂沉降物理模拟实验装置;开展了3种陶粒支撑剂(70/140目、40/70目、30/50目)在SRFP-1型压裂液中的悬砂特性研究,分析了支撑剂在携砂液中的沉降量、沉降速率以及二者随沉降时间的变化规律,得出影响压裂液悬砂性能的主控因素。实验研究表明,携砂液中支撑剂沉降分为快速沉降、缓慢沉降、稳定平衡3个阶段。压裂液黏度是影响压裂液悬砂性能的最主要因素,其次是支撑剂粒径、携砂液砂比。低黏度压裂液仅对70/140目支撑剂有一定悬浮能力(支撑剂充分沉降时间10~20 min),对40/70目和30/50目的支撑剂悬浮性能较差(支撑剂充分沉降时间仅为1.0 min~5.5min),整体悬砂能力较差。中黏度压裂液对70/140目支撑剂悬浮效果好(仅有9.9%~11.1%的支撑剂沉降),在小于15%砂比下对40/70目及30/50目支撑剂有较好的悬浮能力(支撑剂充分沉降时间80 min~240 min)。中高黏度压裂液中,大粒径(30/50目)支撑剂在高砂比(25%~30%)条件下加入,也仅有12%~13.1%的支撑剂沉降,悬砂性能优,适宜作为主加砂阶段的携砂液。研究结果丰富了压裂液悬砂能力测试方法及支撑剂优选评价手段,为压裂液、压裂施工参数的优化及支撑剂的优选,提供基础数据依据。   相似文献   

4.
纤维被广泛的用于水力压裂中,如纤维压裂液中以及高速通道压裂技术,通过加入纤维可以明显提高压裂液的携砂能力,降低支撑剂在裂缝中的沉降速度,改善支撑剂的铺砂截面,极大地提高了压裂改造效果。虽然纤维在水力压裂中得到了广泛的应用,但是纤维对压裂液性能影响试验还少有研究。因此,有必要对纤维压裂液流变性进行研究,分析加入纤维对压裂液性能影响。  相似文献   

5.
体积压裂是非常规油气提高压后产量的有效手段,为降低储层和人工裂缝的伤害,体积压裂主体采用低黏滑溜水携砂,携砂距离受限,储量动用范围小。文章首次提出纤维临界结构浓度,即纤维形成的网络结构可让支撑剂沉降速度快速降低时对应的纤维浓度。低黏滑溜水中,加入纤维对液体黏度无明显影响;静态悬砂实验对比了纤维长度、支撑剂浓度对纤维临界结构浓度的影响,长度9、6、3 mm的纤维,其临界结构浓度分别为0.2%、0.4%、0.6%,支撑剂浓度对纤维临界结构浓度无影响。采用平板可视化实验装置,纤维加量0.3%,对比长度6 mm与3 mm纤维的动态携砂性能,6 mm纤维携砂性能较3 mm提升50%以上。在天然裂缝发育的页岩气井21-X井应用,全程低黏滑溜水纤维携砂,纤维加量0.2%~0.3%,施工压力平稳,有效降低天然裂缝段加砂难度,测试日产气量15.78×104 m3(压力45 MPa),生产524 d,单位压降采气量是地质条件相当的21-Y井的2.43倍。纤维滑溜水携砂技术在页岩气推广应用7口井,平均单井压后产量较地质相当的邻井平均提升20%,实验和现场应用表明,...  相似文献   

6.
压裂施工时,支撑剂一般靠较高黏度的常规聚合物压裂液运输,管流摩阻高;低浓度降阻剂压裂液管流摩阻低,携砂能力也较低;含有纤维的低浓度降阻剂压裂液能显著提高支撑剂的输送能力,且能降低管流摩阻。在不改变压裂液性能的前提下,通过室内试验,优选出最佳降阻剂浓度下最佳纤维浓度的压裂液,不仅可以降低成本,而且其降阻效果比最佳降阻剂浓度压裂液更好、携砂能力更强。  相似文献   

7.
以丙撑基双[(十八烷基聚氧乙烯基)氯化铵](HY)为稠化剂、水杨酸钠为反离子盐配制了清洁压裂液,研究了该压裂液的黏弹性、变形恢复性能、携砂性能、耐温抗剪切性能及破胶性能。在60℃下,该清洁压裂液的黏度随稠化剂量的增加而增加,水杨酸钠加量为1%时的黏度达到最大值,较好的HY压裂液的配方为3%HY+1%水杨酸钠。压裂液中的稠化剂HY在反离子盐的作用下自组装成良好的三维网状结构。该压裂液具有良好的变形恢复能力,高剪切速率下压裂液的黏度迅速下降但随着剪切速率减小黏度几乎又全部恢复。HY压裂液在角频率0.03~100 rad/s 时的弹性模量大于损耗模量,表现出较好的弹性特征。同时,该压裂液具有良好的耐温抗剪切性,在90℃、170 s-1下剪切90 min 后的黏度大于50 mPa·s。HY压裂液的携砂性较好,在25℃和90℃下,携砂量30%时,石英砂在该压裂液中的沉降速率分别为0.075 和15.25 mm/min。压裂液与煤油按体积比5∶1 混合后在210 min 左右破胶,黏度降至5 mPa·s 以下,破胶液表面张力为22.92 mN/m,界面张力为0.51 mN/m,残渣含量为56 mg/L,可满足现场施工要求。图8 参8  相似文献   

8.
为了提升苏里格气田支撑剂铺置效果,防止出砂和支撑剂回流,对纤维进行了表面改性处理,优化了纤维尺寸、加量,对纤维降解性、分散性、岩心伤害、悬砂性能、压裂液体系耐温耐剪切性能、破胶等性能进行了评价。结果表明,纤维直径为10 μm、长度为12 mm,加量为0.15%,在压裂液中分散良好,120 h可降解80%以上,降解后纤维溶液伤害率小于5%,纤维压裂液增黏性能优异,在剪切速率170?s?1、110?℃下剪切120 min后黏度保持在120 mPa·s以上。纤维通过桥接作用形成网状结构,将支撑剂束缚于其中,降低支撑剂沉降速度,现场试验未发生出砂和支撑剂回流现象,压后无阻流量为108.61×104 m3/d,现场压裂效果良好。   相似文献   

9.
预防支撑剂回流的纤维增强技术实验研究   总被引:9,自引:7,他引:2  
支撑剂回流对压裂井有着不利影响,油气田上提出了多种方法来消除或减少支撑剂的回流,其中以纤维增强支撑剂技术最具发展潜力。通过配伍性实验,从5种纤维材料中筛选出了在压裂液中分散性好、不影响压裂液性能的纤维材料A样。把A样纤维和支撑剂混合后,进行了不同闭合压力、不同压裂液粘度和不同纤维浓度的支撑剂充填层稳定性测量实验,并优选出合适的纤维加量为0.9%-1.2%。实验结果表明,加入纤维后,支撑剂充填层的临界出砂流速提高了10倍以上,明显增强了支撑剂充填层的稳定性,对预防支撑剂回流返吐非常有效;同时纤维对支撑剂导流能力的影响可以忽略不计,即不会降低压裂井的增产效果。  相似文献   

10.
张艳  张士诚  张劲  王雷 《油田化学》2014,31(2):199-202
耐高温酸性清洁压裂液配方为:0.1%~5%乙酸、0.1%水杨酸、0.5%~1%阴离子型聚丙烯酰胺稠化剂、0.1%~0.2%季胺盐型阳离子双子表面活性剂和0.5%~3%黏土稳定剂(氯化钾、氯化铵),其余为自来水。研究了不同稠化剂加量下,酸性压裂液的流变性、稠化时间、携砂性以及破胶性等。酸性压裂液呈弱酸性,pH值为4~5。其耐温抗剪切性较好,120℃时的黏度为30~50 mPa·s,140℃时黏度稳定在20 mPa·s左右。压裂液稠化时间在60 s以内。稠化剂加量为1.0%时,压裂液成胶黏度可达140 mPa·s。其携砂能力强,稠化剂加量为0.8%的酸性压裂液单颗砂沉降速率仅0.023 mm/s,而0.8%胍胶压裂液的为0.169 mm/s。压裂液遇到一定量的油、气及地层水时会自动破胶,60~80℃的破胶时间在1 min内,加入过硫酸铵可加快破胶。该酸性压裂液适用于120℃以下的高含钙低渗透储层。  相似文献   

11.
瓜胶压裂液携砂微观机理研究   总被引:1,自引:0,他引:1  
通过对瓜胶压裂液进行静态支撑剂沉降实验、动态黏弹性测试、屈服应力测试、分子结构表征,研究了瓜胶压裂液的宏观性能、分子结构与压裂液携砂性能间的关系。支撑剂沉降实验表明,压裂液黏度的变化与支撑剂沉降速率呈非线性关系,用黏度指标很难准确表征压裂液的携砂性能。动态黏弹性测试表明,压裂液损耗模量的增加有利于降低支撑剂沉降速率,而储能模量的大幅度提高赋予流体弹性特征,这才是支撑剂能够长时间保持均匀悬浮状态的根本原因。压裂液微观结构分析表明,压裂液基液具有杂乱、松散、多孔洞的网络堆砌结构,而交联压裂液具有均匀、紧密的整体堆砌结构,该结构赋予交联压裂液弹性,使其携砂能力发生本质变化。  相似文献   

12.
邬国栋 《钻采工艺》2012,35(4):88-90,106,128
支撑剂回流现象在一些闭合应力低、结构疏松、微裂缝发育的砂岩层段及高压气藏时有发生。纤维控制支撑剂回流技术具有工艺简单,压后快速返排的特点。室内研究表明,在目前常用的压裂液、支撑剂体系下,适用于压裂改造控制支撑剂回流的纤维种类为聚丙烯类纤维,在液相、固相中分散性好,适用纤维长度为8~12mm,纤维浓度为0.8%~1.0%,纤维压裂液体系静态悬砂半衰期可达72h,加入纤维后的支撑剂充填层临界出砂流速可提高10倍以上,对裂缝导流能力和渗透率影响较大,但与储层基质渗透率相比仍然较大,不会影响压裂改造后的产量。  相似文献   

13.
纤维压裂液携砂性能在很大程度上取决于压裂液流变性和微观结构。为了深入认识纤维压裂液携砂机理,通过室内实验观测纤维的分散性,研究纤维- 瓜胶基液的流变性能,并利用电镜扫描研究了纤维- 瓜胶基液的微观结构。研究结果表明: 纤维在瓜胶基液中能够均匀分散;纤维- 瓜胶基液符合幂律流变模型,纤维能够有效提高瓜胶基液黏度,增大瓜胶基液结构强度及内摩擦力,20 ℃时0.4% 纤维加量可将瓜胶基液黏度由32.496 mPa·s 提高到129.009 mPa·s,并在温度升高的情况下仍具有较高的黏度和结构强度;纤维- 瓜胶基液能够形成一定的网状结构并加强对支撑剂的束缚携带作用。研究结果可为后续理论研究和现场应用提供参考。  相似文献   

14.
新型纤维在水力压裂液中的应用   总被引:1,自引:0,他引:1  
常规聚合物压裂液一般依赖较高的流体粘度输送支撑剂,而纤维基压裂液通过纤维对支撑剂的携带、分布和运输作用来提高携砂能力,它能显著提高压裂液对支撑剂的输送能力,具有减少聚合物加量、减轻地层伤害、控制缝高、降低施工摩阻等显著优点。该项技术在几个油田的应用结果表明,它能够有效提高油井产量,具有广泛的适用性。  相似文献   

15.
为改善支撑剂在裂缝中的铺置形态和提高压裂增产效果,采用实验模拟方法,应用可视化裂缝平板装置开展压裂液携砂实验,结合支撑剂颗粒的微观运动轨迹和砂堤的宏观形状,描述缝内砂堤的形成过程,分析黏性和非黏性压裂液携砂方式的区别,研究射孔孔眼间干扰、压裂液排量、压裂液黏度和施工砂比对缝内砂堤形态的影响规律。结果表明:支撑剂在裂缝中的运移是流化和沉积共同作用的结果,以流化拖拽和输送为主;黏性压裂液中流化层和砂堤之间可形成不流动的液体薄层,对颗粒具有托举作用,减小流体和颗粒间的摩擦和碰撞;砂堤的形成过程共经历砂堤形成、生长、平衡状态和活塞状推进4个阶段,在射孔孔眼干扰和液体冲蚀的共同影响下,形成的砂堤形态可由堆积角、平衡高度和前进角表征,裂缝内存在近井筒和缝高方向的无砂区;砂堤的平衡高度主要取决于支撑剂颗粒的运动速度,与施工排量和压裂液黏度成反比,与砂比成正比。该研究可为压裂施工参数优化提供参考。  相似文献   

16.
通道压裂铺砂形态是显示通道压裂效果的重要指标。文中采用可视化变角度缝网支撑剂铺置装置,研究了通道压裂裂缝铺砂形态影响因素,分析了压裂液黏度、支撑剂质量浓度、纤维质量浓度、排量、射孔数、脉冲时间对铺砂通道率的影响,并采用混合水平正交试验及拟水平法研究了各因素对通道率的影响程度。结果表明:支撑剂质量浓度越低,脉冲时间越短,纤维质量浓度越大,则通道率越高;注入排量过高或过低均对支撑剂铺置形态不利,最优排量为4 m3/min;分簇射孔的通道率要明显大于连续射孔;较大的压裂液黏度能获得更大的通道率。通过混合水平正交试验,得出各因素的影响程度大小顺序依次为:支撑剂质量浓度、脉冲时间、纤维质量浓度、布孔方式、排量、压裂液黏度。  相似文献   

17.
为了研究压裂过程中裂缝内支撑剂的动态输砂规律及分布形态,采用自主研制的多尺度裂缝系统有效输砂大型物理模拟实验装置,进行了压裂液黏度、支撑剂类型、注入排量和砂比等对支撑剂在不同尺寸裂缝中的动态输送和砂堤剖面高度影响的模拟实验。实验结果表明,裂缝内动态输砂规律的影响因素,按影响程度从大到小依次为压裂液黏度、支撑剂粒径、砂比和排量;压裂液黏度越高,沉砂量越少,砂堤剖面高度越小而平缓,且在主裂缝中更为明显;支撑剂粒径越大,沉砂量越多,砂堤剖面高度越大,且在主裂缝中更加明显;砂比越高,沉砂量越大,砂堤剖面高度也越大,且在分支缝中增幅更大;随排量增大,主裂缝中的沉砂量略减小,分支缝中的沉砂量差别不大。研究结果为优选压裂液、支撑剂,制定压裂方案,以及优化压裂施工参数提供了理论依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号