首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
以焦化蜡油或焦化柴油为原料,对50万t/a焦化蜡油加氢装置的新型反应器内构件(气液分配盘及冷氢系统)的工业应用效果进行了评价。结果表明:以焦化蜡油为原料,采用新型加氢反应器内构件,反应器空间利用率达到82.1%,催化剂床层出入口平均径向温差小于1.5℃,催化剂失活速率为0.030℃/d;装置也同样适用于焦化柴油,即装置对原料的适应性好。  相似文献   

2.
某蜡油加氢裂化装置在高负荷高转化率工况下,裂化反应器第一床层径向温差达到10℃,是由于单床层采用2种不同尺寸与不同活性的催化剂级配,反应气化率变化加剧,不利于径向液体分布,从而使径向温差偏大;柴油加氢裂化装置第二床层径向温差达到20℃,在一定范围内,其径向温升与轴向床层温升呈正比,与冷氢流量呈反比,是由于单床层采用4种不同尺寸与不同活性的催化剂级配,反应器内径向气、液相分布不均匀,径向局部液体流量不均匀,导致反应器床层径向温差增大。通过提高催化剂装填质量,建立实际模型,加强对操作参数监控,降低反应器的径向温差,从而提高催化剂的利用率,降低操作难度,实现装置的长周期运行。  相似文献   

3.
FF-56催化剂是中国石油化工股份有限公司抚顺石油化工研究院研制的新型高活性加氢裂化预处理催化剂,于2013年在中国石油化工股份有限公司镇海炼化分公司1.2 Mt/a加氢裂化装置首次工业应用。该催化剂以Mo-Ni为活性金属组分,采用络合技术制备,以大孔氧化铝为载体,适度增强活性金属与载体的相互作用。工业应用结果表明:FF-56催化剂具有较高的脱硫、脱氮活性,对原料的适应性强,能够满足装置长周期运转的要求。控制精制反应器入口温度332~345℃,平均温度364~376℃,精制油脱氮率达97.0%。对比FF-46催化剂,反应器入口温度低3℃条件下,FF-56催化剂的总温升却高了8℃,说明FF-56催化剂比FF-46具有更高的反应活性。  相似文献   

4.
介绍了中国石油化工股份有限公司洛阳分公司2.2 Mt/a蜡油加氢处理装置催化剂失活现象,从催化剂组成和操作因素两方面对床层温升下降和催化剂活性下降原因进行了分析,发现再生剂FF-24比例较大,约为59.8%;原料油组分重,终馏点700℃以上;脱沥青油品质差;床层结焦等都是影响催化剂失活的因素,最主要的原因是再生剂比例大和原料油组分重。催化剂失活后,装置将反应温度从360℃提高至385℃,气油比从780提至830,但均达不到理想效果,因此采取更换催化剂解决此问题,并将换下的催化剂送中国石油化工股份有限公司抚顺石油化工研究院(FRIPP)分析。FRIPP分析催化剂失活原因为反应器入口温度低,再生剂FF-18无使用价值,原料油品质差。  相似文献   

5.
介绍了催化剂QLH-03 B在德黑兰炼油厂260万t/a柴油加氢精制装置上的工业应用情况。结果表明,以中东高硫原油为原料,在设计工况条件下,装置运行平稳;催化剂投用初期反应器入口温度(338℃)较低,反应器床层压降约为0.25 MPa,反应器床层径向温差小于2℃;装置满负荷运行41个月后,反应器床层压降升高至0.44 MPa,加权平均床层温度比设计值仅高出4℃;装置满负荷运行3 a后,柴油脱硫率仍高达99.9%,脱氮率为98.9%,精制柴油产品含硫量小于10μg/g,符合欧Ⅴ柴油质量标准。  相似文献   

6.
采用CFX流体力学模拟软件对所开发的新型冷氢箱在汽油加氢反应器中的应用进行了模拟计算,考察了新型冷氢箱在反应器内冷热物流混合传热过程中的重要作用。结果表明:在不设置冷氢箱的情况下,下催化剂床层入口的最大径向温差超过5.0℃,说明设置冷氢箱是必要的;新型冷氢箱为冷热物流的混合传热提供了充分的时间和空间,其下催化剂床层入口的最大径向温差小于1.0℃,说明冷氢箱具有良好的混合传热效果;采用新型冷氢箱时,汽油加氢反应条件下可以最大程度地简化冷氢管结构,甚至可以不设冷氢管;采用新型冷氢箱时,较小的压力降就能够达到良好的混合效果,有利于降低装置的能耗;在冷氢箱出口下方设置筛板可以有效纠正新型冷氢箱出口处的偏流现象。  相似文献   

7.
介绍了中国石化石油化工科学研究院开发的新型高效加氢反应器成套技术特点及其在劣质化重油加氢工艺装置上的应用效果。相比于原有技术,新型加氢反应器内构件整体物流混合及分配性能优异,液相分配不均度因子仅为0.08,催化剂整体利用率可达95%,扁平化结构可使床层多装300~500 mm高度的催化剂;工业应用结果表明,新型加氢反应器内构件解决了劣质化重油加氢工艺装置存在的床层热点及物流分配难题,催化剂床层出口平均径向温差均值仅为5.3 ℃且允许更大的轴向温升,有利于反应温度灵活调控及装置长周期高效稳定运转。  相似文献   

8.
为适应蜡油原料重质化、劣质化发展趋势,延长装置运转周期,采用具有粒子尺寸大且粒径分布集中、相对结晶度高的特种氧化铝载体材料及Ⅱ类活性相调节技术,开发了具有较大孔径和孔体积、更高抗金属和容金属能力的FF-34蜡油加氢处理催化剂。工业应用结果表明:在入口压力10.0 MPa、体积空速高达1.00 h-1、氢油体积比558、入口反应温度仅334℃条件下,精制蜡油硫质量分数约3000μg/g,氮质量分数为1321μg/g,化学氢耗为0.73%,说明了FF-34催化剂具有良好的加氢脱硫和加氢脱氮性能。  相似文献   

9.
中石油克拉玛依石化有限责任公司1.2 Mt/a柴油加氢改质装置反应器催化剂床层在正常运行过程中存在热点温度,第四床层后精制剂床层出口的径向温差15~20℃,严重影响装置日常平稳操作以及产品质量。通过分析改质反应器催化剂床层出现热点温度以及催化剂烧结的原因,发现原料性质变化、循环氢压缩机故障、人为误操作、催化剂装填、反应器卸料管的设计缺陷等都会对催化剂床层温度分布产生影响,造成催化剂飞温、烧结等现象。采取催化剂床层卸料管口封堵、控制装剂质量、操作中稳定原料配比、加强循环氢压缩机的维护及加强人员操作技术水平等措施后,催化剂各床层温差不超过5℃,取得较好的效果,确保了装置的长周期安全平稳运行。  相似文献   

10.
某公司3.2 Mt/a蜡油加氢处理装置加氢蜡油硫含量及反应器第一床层压差持续上升,运行末期加工负荷降至340 t/h,反应温度升至413℃,加氢蜡油硫质量分数持续高于0.5%(设计值小于0.35%),反应器第一床层压差0.35 MPa(设计值小于0.3 MPa)。为避免下游装置腐蚀加剧及反应器内构件损伤,装置运行43个月后进行停工撇头。对催化剂失活、第一床层压力降上涨、高压换热器内漏等问题进行了探讨分析,提出了强化原料油管理、稳定工艺操作、改善床层温度分布、优化催化剂级配以及根据金属沉积量调整反应苛刻度等措施,保障了装置长周期运行,满足了"四年一修"的需求,避免了装置运行期间停工撇头。  相似文献   

11.
上海石油化工股份有限公司3.30 Mt/a加氢装置设计空速高达2.3 h-1,为了满足高空速条件下稳定生产国Ⅳ标准柴油的要求,采用抚顺石油化工研究院开发的S-RASSG级配技术及配套的FHUDS-2/FHUDS-5催化剂组合体系,在装置运转5个月后,自2010年11月至2011年2月间,在体积空速为1.8~2.2 h-1、反应器入口温度318~325℃、出口温度371~378℃等条件下,加工硫质量分数为0.96%~1.26%的直馏柴油掺兑40%催化柴油及焦化汽柴油混合油,连续生产国Ⅳ标准柴油70 d,精制柴油符合国Ⅳ标准柴油质量指标要求。说明S-RASSG级配技术可以在高空速条件下满足加工直馏柴油掺兑40%二次加工油品混合原料油稳定生产符合国Ⅳ标准清洁柴油的要求,体现了S-RASSG技术配套的FHUDS-2/FHUDS-5组合体系具有活性稳定性好和对原料油适应性强的特点,是高空速条件下加工掺兑较高比例二次加工油品混合油生产国Ⅳ排放标准清洁柴油的理想选择。  相似文献   

12.
为进一步考察催化剂RSDS-1的选择性加氢脱硫性能,中国石油化工股份有限公司长岭分公司对RSDS装置进行了催化裂化全馏分汽油加氢试验。结果表明,在反应器上床层平均人口温度260.1℃、床层平均温度270.8℃、空速425h^-1、氢油体积比422:1、反应压力1.40MPa的条件下,产品硫质量分数为69ug/g,研究法辛烷值损失07~2.0,质量满足欧Ⅲ标准的规定。  相似文献   

13.
RS-1000柴油超深度脱硫催化剂和FH-5A的组合应用   总被引:1,自引:0,他引:1  
介绍了RS-1000超深度脱硫催化剂和FH-5A、FH-5传统催化剂在中国石化镇海炼化分公司3.0Mt/a柴油加氢装置上的应用情况,解决了RS-1000超深度脱硫催化剂干燥、硫化等过程与FH-5A、FH-5传统催化剂的组合问题。标定结果表明,RS-1000超深度脱硫催化剂与FH-5A、FH-5传统催化剂组合应用,在原料平均硫质量分数为1.36%、反应进料满负荷、空速1.97h-1、氢油体积比298、反应入口压力5.79MPa、反应入口温度336℃、平均床层温度约360℃的条件下,精制柴油硫质量分数为0.044%,平均脱硫率达到96.8%,脱氮率为85.2%;此工况氢耗0.77%,反应器压降0.17MPa,床层径向温差仅3℃,表明该催化剂组合具有良好的活性。工业运转数据显示,经过3.5年的长周期运行,该催化剂组合仍具有良好的活性,表明其具有很高的稳定性。  相似文献   

14.
对中国石油化工股份有限公司洛阳分公司蜡油加氢处理装置影响氢耗的因素进行了分析并提出改进建议。结果表明:蜡油加氢处理装置氢耗随原料油密度、原料油硫含量和反应温度升高而增大。原料油密度在891~908 kg/m3时,化学氢耗为5.15~6.95 kg/t;原料油硫质量分数为0.674%~1.097%时,化学氢耗为4.25~6.28 kg/t;反应温度为299~337℃时,化学氢耗为5.31~5.90 kg/t。为了降低氢耗,热高压分离器温度选择在240~260℃,冷高压分离器操作温度控制在45~55℃,以降低循环氢溶解损失。同时,装置应定期进行闭灯检查以防止装置氢气泄漏。在满足生产的条件下,尽量减少排放废氢气。  相似文献   

15.
采取更换反应器分配器和优化操作控制措施,对3.1 Mt/a渣油加氢装置进行了改造。结果表明,将所有反应器入口分配器更换为CLG喷射式,则每台反应器最大径向温差由改造前的约50℃降低到改造后的4~7℃。此外,渣油中硫、氮、残炭和金属(Ni与V)的脱除率平稳且有所提高,依次约为80%,35%,40%,60%。  相似文献   

16.
中国石化金陵分公司加氢裂化装置第六周期采用FF-66加氢精制催化剂及FC-16B/FC-14组合加氢裂化催化剂,装置运行36个月后,产品变压器油氧化安定性降低,倾点较高,尾油黏度指数无法满足润滑油基础油的需求。为了改善产品质量,提高加氢能力,装置第七周期精制剂采用FF-66级配体相催化剂FTX-1,裂化剂采用FC-16B/FC-14级配体相催化剂FTXC-1。标定结果表明,与第六周期相比,第七周期产品重石脑油硫质量分数从4.0 μg/g降低至1.3 μg/g,喷气燃料烟点从25.4 mm升高至26.8 mm,变压器油倾点从-9 ℃降低至-12 ℃。芳烃含量高是变压器油氧化安定性差的主要原因,通过加氢饱和处理,变压器油的芳烃质量分数从约10%降至最低约0.5%,氧化安定性得以改善。但是,第七周期尾油黏度指数为91,未能满足润滑油基础油的要求,可以通过掺炼石蜡基油种的蜡油和提高裂化剂的开环能力来提升尾油黏度指数。  相似文献   

17.
为解决直馏混合蜡油产品质量指标达不到国家标准要求问题,中国石油抚顺石化公司在0.4 Mt/a加氢裂化装置上试用了中国石油化工股份有限公司抚顺石油化工研究院研发的FF-46型加氢裂化预处理催化剂。结果表明,在处理量为35 t/h,二、三反应器温度为367.54,371.00℃,高压分离器压力为12.2 MPa,氢油体积比为1 560的工艺条件下,氢耗[V(氢气)/m(原料油)]为165 m3/t,脱硫率为93.4%,脱氮率为99.17%,蜡油单程转化率为74%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号