首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KF/K_2CO_3/γ-Al_2O_3催化合成α-呋喃丙烯酸   总被引:1,自引:0,他引:1  
实验以呋喃甲醛和丙二酸为原料,KF/K2CO3/γ-Al2O3为催化剂,经Knoevenagel缩合反应,在无溶剂条件下催化合成了α-呋喃丙烯酸。考察了催化剂用量、呋喃甲醛与丙二酸摩尔比和反应时间对α-呋喃丙烯酸收率的影响。实验结果表明,其最佳工艺条件为:呋喃甲醛用量12.5 mL(0.15 mol),n(呋喃甲醛)∶n(丙二酸)=1.0∶1.3,KF/K2CO3/γ-Al2O3用量2.0 g(含KF 3.75 mmol),反应时间60 min。α-呋喃丙烯酸的收率达93%以上。  相似文献   

2.
采用浸渍法制备了KF/Al_2O_3固体碱催化剂,并应用在大豆油与甲醇的酯交换反应中,探索了催化剂制备条件和酯交换反应条件;采用SEM,XRD,TG-DTA等方法对催化剂进行了表征。实验结果表明,当KF负载量(基于Al_2O_3载体的质量)为40%时,在773 K下焙烧3 h,可制得催化活性较高KF/Al_2O_3催化剂。XRD与TG-DTA表征结果显示,KF/Al_2O_3催化剂的活性是因KF与Al_2O_3经高温焙烧产生了新的晶相K_3AlF_6。在n(甲醇):n(大豆油)=12:1、催化剂用量(基于大豆油的质量)为3%、回流状态下反应3 h,生物柴油的收率可达83.7%。  相似文献   

3.
以固体超强酸SO_4~(2-)/SnO_2-Al_2O_3为催化剂,马来酸酐和环己醇为原料,经酯化-异构化反应一步合成富马酸单环己酯。考察了催化剂制备条件及反应条件对富马酸单环己酯收率的影响,并采用GC-MS和FTIR技术对产物进行了表征分析。实验结果表明,适宜的SO_4~(2-)/SnO_2-Al_2O_3催化剂制备条件为:n(Sn)∶n(A1)=9.5∶1、浸渍液硫酸的浓度3.0 mol/L、焙烧温度550℃、焙烧时间3 h。由正交实验得到合成富马酸单环己酯的优化反应条件为:环己醇与马来酸酐的摩尔比2.0∶1、SO_4~(2-)/SnO_2-Al_2O_3催化剂用量0.6 g、反应温度125℃、反应时间4 h。在此条件下,富马酸单环己酯的收率可达76.61%。SO_4~(2-)/SnO_2-Al_2O_3催化剂具有较好的重复使用性能。  相似文献   

4.
碱性离子液体催化合成α-呋喃丙烯酸   总被引:3,自引:0,他引:3  
实验以糠醛和丙二酸为原料,采用Knoevenagel法,以碱性离子液体为催化剂和溶剂,高效率合成α-呋喃丙烯酸。讨论了糠醛与丙二酸的用量、反应时间和温度等对缩合反应的影响。实验结果表明,最佳反应条件为:n([bmim]_2CO_3):n(糠醛):n(丙二酸)=1.3:1:1,反应温度30℃,反应时间20 min,收率大于98%。产物后处理简单,离子液体可多次循环使用。经核磁共振、红外光谱、质谱和元素分析对产物的结构进行了表征。  相似文献   

5.
以NH_4NO_3水溶液预处理的γ-Al_2O_3为载体,采用浸渍法制备了Co/γ-Al_2O_3催化剂,考察了添加少量贵金属Ru对Co/γ-Al_2O_3催化剂F-T合成性能的影响。实验结果表明,添加Ru可作为氢溢流源促进Co物种的还原,另外,Ru与Co相互作用形成易还原的Co-Ru物种,导致催化剂表面Co物种的还原温度降低,Co物种容易还原,反应过程中可利用的表面金属Co原子数增加;Ru可增加Co/γ-Al_2O_3催化剂表面桥式CO吸附的强度,使CO便于离解;添加少量Ru能明显提高Co/γ-Al_2O_3催化剂的活性和重质烃C_5~+的选择性。在原料气n(H_2):n(CO)=2.0、反应温度493K、压力1.5 MPa、气态空速500 h~(-1)下,15.0%Co-0.4% Ru/γ-Al_2O_3催化剂上CO的转化率和C_5~+的选择性分别为85.39%和84.28%。  相似文献   

6.
以K_2CO_3/MgO为固体碱催化剂,正丙醇与碳酸二乙酯(DEC)经液相酯交换合成了碳酸乙丙酯(EPC);用X射线衍射和CO_2程序升温脱附的方法对催化剂进行了表征。表征结果显示,随K_2CO_3负载量的增加,MgO载体的特征衍射峰强度减弱,在K_2CO_3负载量较高时有明显的K_2O晶相出现;K_2CO_3/MgO催化剂上的弱碱性位可能是催化该反应的活性中心。同时考察了K_2CO_3负载量、催化剂用量、反应时间和原料配比对酯交换反应的影响。实验结果表明,K_2CO_3负载量为20%(相对于催化剂的质量分数)的K_2CO_3/MgO催化剂对该反应有较好的催化性能;适宜的反应条件为:催化剂用量为反应物质量的1.00%、反应温度403 K、反应时间4 h、n(DEC):n(正丙醇)=1.0:1.5;在此条件下,DEC的转化率为62.32%,EPC的选择性为83.29%,EPC的收率为51.89%。  相似文献   

7.
催化正丁醛自缩合生成辛烯醛的反应是工业上生产有机化工原料辛醇(2-乙基己醇)的重要反应。笔者对该反应所需的酸碱双功能催化剂进行筛选,然后采用筛选出的催化剂,考察了反应条件对正丁醛自缩合反应的影响。结果表明,该反应适宜的酸碱双功能催化剂为KF与γ-Al_2O_3质量比为9.0的KF-γ-Al_2O_3。最佳的反应条件为KF-γ-Al_2O_3与正丁醛质量比0.10、反应温度为120℃、反应时间为6h,此时,正丁醛的转化率为99.0%,辛烯醛的收率和选择性分别为98.1%和99.1%。KF和γ-Al_2O_3的协同催化作用促进了KF-γ-Al_2O_3催化体系对正丁醛自缩合反应催化性能的提高。在此基础上,推测了KF-γ-Al_2O_3催化正丁醛自缩合反应的酸碱协同作用机理。  相似文献   

8.
以γ-Al_2O_3为载体,采用分步浸渍法制备了催化剂NiMo(W)/γ-Al_2O_3,采用XRD、SEM、BET和Py-IR对其进行了表征,考察了活性组分W的添加对催化剂NiMo/γ-Al_2O_3结构及酸性的影响,并以菜籽油为原料,在固定床反应器上,考察了活性组分W对催化剂NiMo/γ-Al_2O_3加氢脱氧反应性能的影响。结果表明,两种催化剂活性金属分散都很均匀,且W的加入提高了催化剂NiMo/γ-Al_2O_3的L酸活性位的数量,而且还可有效提高NiMo/γ-Al_2O_3加氢脱羧基反应的选择性及异构化能力。在反应温度为360℃、反应压力5.0MPa、LHSV=1.0h~(-1)的条件下,与NiMo/γ-Al_2O_3相比,NiMoW/γ-Al_2O_3在保持较高的脱氧率(高于99.98%)外,拥有更高的生物柴油收率(可达83.41%),氢耗更低(可达2.20%)。  相似文献   

9.
针对FAPGG关键体N-(3-(2-呋喃基)丙烯酰基)苯丙氨酸(FA-PHE-OH)收率和纯度低的问题,设计以糠醛和丙二酸为起始原料,经过Knoevenagel、甲酯化、酰基化及水解反应新路线制备FA-PHE-OH。得到的最佳制备工艺条件如下,2-呋喃丙烯酸为:反应温度95℃、反应时间5h、n(糠醛)∶n(丙二酸)=1∶1.2;3-(2-呋喃基)丙烯酰基-L-苯丙氨酸甲酯为:反应温度35℃、反应时间4h、n(2-呋喃丙烯酸)∶n(L-苯丙氨酸甲酯盐酸盐)=1∶1.2,本反应以SOCl_2代替BOP,收率提高76.6%,且成本大幅降低。在此条件下得到白色FA-PHE-OH产品,HPLC纯度99.5%,总收率80.2%。  相似文献   

10.
以拟薄水铝石在500℃焙烧制取的γ-Al_2O_3为载体,利用Ce(SO_4)_2-H_2SO_4溶液浸渍法用对γ-Al_2O_3改性,制备Ce-SO_2-4/Al_2O_3固体催化剂。通过X射线衍射(XRD)、红外光谱(IR)、扫描电镜(SEM)、N_2吸附-脱附等分析方法对催化剂进行了表征。结果表明活性组分的负载对载体Al_2O_3的结构产生了较大的影响,由原来的片状结构变为粒状结构,BET表面积由原来314.3m~2/g增大到346.3m~2/g。颗粒堆积后产生介孔范围的孔道,平均孔径约为5.29nm。将Ce-SO_4~(_2)/Al_2O_3催化剂应用于催化合成乙酸正丁酯具有良好的催化活性,在n(冰乙酸)∶n(正丁醇)=1∶1.0、m(催化剂)∶m(冰乙酸)=0.05∶1、反应3h条件下,酯化率可达93.42%。  相似文献   

11.
Fe_2O_3/γ-Al_2O_3催化乙醇脱水制乙烯   总被引:3,自引:2,他引:1  
采用浸渍法制备了一系列不同Fe_2O_3负载量的Fe_2O_3/γ-Al_2O_3催化剂,考察了它们在乙醇脱水制乙烯反应中的催化性能,通过XRD、BET和NH_3-TPD等手段对催化剂进行了表征,并对Fe_2O_3负载量、反应温度、乙醇含量和液态空速等工艺条件进行了优化。实验结果表明,Fe_2O_3可较好地分散在γ-Al_2O_3载体上,Fe_2O_3的引入使催化剂的孔体积和孔径都有所增大,表面酸量、酸密度和强度分布发生明显变化。Fe_2O_3负载量为0.5%的Fe_2O_3/γ-Al_2O_3催化剂的表面总酸量和酸密度最大,尤其是中强酸含量最多,其催化乙醇脱水制乙烯的性能最佳。以Fe_2O_3负载量为0.5%的Fe_2O_3/γ-Al_2O_3为催化剂,在反应温度380℃、原料乙醇质量分数92.4%、液态空速1.2h~(-1)的反应条件下,乙烯收率可达98.5%。  相似文献   

12.
通过分步浸渍法制备Fe_2O_3·SO_4~(2-)/γ-Al_2O_3催化剂,并用于催化1-丁烯齐聚反应,考察了催化剂制备条件和反应条件对催化性能的影响,并与Fe_2(SO_4)_3/γ-Al_2O_3催化剂进行性能比较。结果表明,在0.96 MPa、60℃、液时空速为5h-1的反应条件下,采用Fe负载量为6%、SO_4~(2-)负载量为1.2 mmol/g(γ-Al_2O_3)的Fe_2O_3·SO_4~(2-)/γ-Al_2O_3催化剂,1-丁烯齐聚反应的转化率达到68.0%,二聚物选择性为95.0%。α-Fe_2O_3是催化1-丁烯齐聚反应的活性组分,并能提高二聚体选择性;此外,α-Fe_2O_3晶相与SO2-4的相互作用对其催化1-丁烯齐聚反应的活性有重要影响,γ-Al_2O_3与SO_4~(2-)的相互作用也对催化活性有一定的影响。Fe负载量为6%的Fe_2O_3·SO_4~(2-)/γ-Al_2O_3催化活性最高,此时NH_3-TPD结果显示,催化剂只存在较弱的酸中心和适中的酸量。  相似文献   

13.
采用等体积浸渍法制备了一系列Ni_(10.7)Y_xW_y/γ-Al_2O_3催化剂,用于甲烷二氧化碳干重整(DRM)反应,通过XRD、BET、H_2-TPR、TPH、HRTEM和XPS对催化剂进行了表征,考察了金属助剂对催化剂性能的影响。实验结果表明,添加钇使NiAl_2O_4的还原程度增强且能促进活性组分Ni的分散,添加钇和钨可使催化剂的比表面积、孔径和孔体积均减小。同时添加钨和钇的Ni_(10.7)Y_3W_(10)/γ-Al_2O_3催化剂的稳定性最好。在DRM反应过程中,Y_2O_3与CO_2作用形成Y_2O_2CO_3能抑制丝状碳的生成,从而提高催化剂的活性和稳定性。Ni_(10.7)W_(10)/γ-Al_2O_3催化剂在DRM反应过程中发生W碳化反应生成α-WC,与活性组分Ni形成双活性位点,从而提高了催化剂的活性和稳定性。Ni_(10.7)Y_3W_(10)/γ-Al_2O_3催化剂不仅生成了双活性位点,还有效抑制了积碳的扩散,从而抑制了丝状碳的生成。  相似文献   

14.
甲浸渍法将 Ni~(2+)负载到含 Pr~(3+)的γ-Al_2 O_3 载体上得到的 Ni/Pr~(3+)-γ-kl_2 O_3 催化剂,对 CO 加氢甲烷化的活性明显高于 Ni/γ~Al_2 O_3。在常压、260℃、H_2/CO=3.5、空速6100时~(-1)的实验条件下,甲烷时空收率提高约50倍。最适宜镨含量为1w%,且添加 Pr~(3+)后不改变 Ni/γ-Al_2 O_3 上 CO 加氢甲烷化反应的机理。经 XRD、TEM、SEM、TPR 及改变催化剂制法等实验说明,Pr~(3+)先与载体γ-Al_2 O_3 发生相互作用,即 Pr~(3+)被γ-Al_2 O_3 稳定,减少或阻碍γ-Al_2 O_3 再与 Ni~(2+)离子发生化学作用生成 NiAl_2 O_4。结果催化剂表面“自由”NiO 较多,可在较低温度(310℃)下还原。还原后,表面富 Ni,故可提高 CO 甲烷化的活性。  相似文献   

15.
采用固定床流动反应装置研究了Ni/α-Al_2O_3对甲烷部分氧化制合成气的催化活性,考察了不同镍负载量、CH_4/O_2配比、反应温度、压力等因素对催化剂性能的影响。结果表明,在催化剂用量0.5ml,碳空速1.5×10~5h~(-1)的条件下,负载型Ni/α-Al_2O_3对甲烷部分氧化具有较好的催化活性,CO和H_2的选择性随着反应温度的升高或压力的降低而增加,发现12%(mass)Ni/α-Al_2O_3的活性较好,具有一定的抗积炭性能。  相似文献   

16.
采用过量浸渍法制备γ-Al_2O_3负载磷钨酸(PW)系列催化剂,并在固定床反应器上考察了系列催化剂对二甲醚(DME)与环氧乙烷(EO)合成乙二醇二甲醚(DMEG)反应性能的影响;优化了PW负载量、反应温度、反应压力、原料配比以及气态空速等反应条件。采用XRD和NH_3-TPD方法表征了催化剂的分散性及酸性。表征结果显示,低PW负载量试样在γ-Al_2O_3表面高度分散,高PW负载量试样在γ-Al_2O_3表面聚集形成晶体;PW负载量为40%(w)的试样在γ-Al_2O_3表面呈现最大分散,40%PW/γ-Al_2O_3催化剂具有最大酸量。实验结果表明,40%PW/γ-Al_2O_3催化EO与DME合成DMEG反应,在n(DME)∶n(EO)=3、反应温度348 K、GHSV=1 500 h~(-1)、反应压力0.60 MPa的最优反应条件下,EO转化率为100%,DMEG选择性可达52.1%。  相似文献   

17.
《石油化工》2016,45(10):1192
以高岭土为载体,采用浸渍法制备了高岭土负载KF固体碱催化剂,并用于月桂酸甲酯(ML)与乙二醇单甲醚(EGME)的酯交换制备乙二醇单甲醚月桂酸酯(EGMEML)反应,考察了不同KF负载量催化剂的用量、醇酯摩尔比、反应时间和反应温度等条件对EGMEML收率的影响。通过XRD、SEM、FTIR、CO_2-TPD和N_2吸附-脱附等方法对催化剂结构进行了表征。表征结果显示,KF负载高岭土固体碱催化剂中,出现了K3AlF_6晶相,且随KF负载量增加,碱量明显增加,催化活性显著提高。实验结果表明,在催化剂用量为4.5%(w)(基于EGME)、n(EGME)∶n(ML)=3.0、反应时间6h、反应温度120℃的条件下,催化剂表现出良好的活性,E GMEML收率可达92.0%;当KF负载量为15%(w)时,催化活性最强。催化剂的高活性可能与KF和高岭土作用生成的K_3AlF_6有关,催化剂重复使用后,仍保持较高活性和稳定性。  相似文献   

18.
通过活性组分和载体筛选制备了MgO/γ-Al_2O_3催化剂,用于碳酸二甲酯(DMC)和正丁醇液相酯交换反应合成碳酸甲丁酯(BMC),并考察了活性组分前驱物、催化剂焙烧温度和活性组分负载量对催化剂活性的影响。结果表明,以Mg(OAc)_2·4H_2O为活性组分前驱物,催化剂焙烧温度为400℃,活性组分MgO负载量为5%时,MgO/γ-Al_2O_3表现出高的酯交换反应催化活性。同时考察了反应温度、原料配比对酯交换反应的影响,适宜的反应温度为100℃;物料配比n(DMC):n(正丁醇)=3:1时,正丁醇的转化率达到98.4%,BMC的选择性为91.9%,收率为90.4%。催化剂重复实验表明催化剂重复使用性能良好。  相似文献   

19.
采用柠檬酸络合法制备了一系列的CuCe-O/γ-Al_2O_3催化剂,利用XRD,H_2-TPR,BET,SEM等手段对不同热解温度、热解气氛下制备的CuCe-O/γ-Al_2O_3催化剂进行表征,并在连续固定床微反装置上评价了CuCe-O/γ-Al_2O_3催化剂的CO氧化性能。实验结果表明,改变热解温度及热解气氛对CuCe-O/γ-Al_2O_3试样的比表面积及形貌特征影响较小,CuCe-O/γ-Al_2O_3试样中CuO在γ-Al_2O_3载体表面呈高度分散状态,弱氧气氛增强了CuO/CeO_2两相间的相互作用,加剧了Ce^(3+)从CuO中获取氧的趋势,提高了氧化铜的氧化还原能力,相应的H_2-TPR还原温度向低温区偏移;在15%(φ)空气+85%(φ)N_2热解气氛及230℃热解温度下制备的CuCe-O/γ-Al_2O_3试样具有优良的CO氧化活性,表明适宜的热解条件可以增强CuO/CeO_2两相的相互作用,进而提高CuCe-O/γ-Al_2O_3试样的氧化还原能力。  相似文献   

20.
在固定床上,通过在Na_2CO_3-γ-Al_2O_3表面添加MnO_2助剂制备了Mn-Na_2CO_3-γ-Al_2O_3吸附剂,研究了其对SO_2和NO吸附性能的影响。实验结果表明,MnO_2负载量对Mn-Na_2CO_3-γ-Al_2O_3吸附SO_2和NO的性能有一定影响,MnO_2的最佳负载量为3%~5%(w)。MnO_2的添加不仅保持了Na_2CO_3-γ-Al_2O_3表面SO_2和NO原有的吸附性质,还将Na_2CO_3-γ-Al_2O_3的最佳吸附温度从90℃降至20~50℃;在吸附温度50℃下,Mn-Na_2CO_3-γ-Al_2O_3吸附SO_2和NO的吸附容量比Na_2CO_3-γ-Al_2O_3分别提高了35.1%和44.1%。MnO_2的添加,提高了Na_2CO_3-γ-Al_2O_3表面晶格氧的含量,促进了SO_2和NO的氧化反应,提高了Na_2CO_3-γ-Al_2O_3吸附SO_2和NO的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号