首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
页岩中超临界甲烷等温吸附模型研究   总被引:1,自引:0,他引:1  
针对甲烷在页岩储层中呈超临界状态吸附的特点,开展了页岩中超临界甲烷等温吸附模型的研究.引入过剩吸附量,对常规吸附模型(Langmuir,Freundlich,Expand-Langmuir,Langmuir-Freundlich,Toth,D-R和D-A等吸附模型)进行了修正,将常规吸附模型扩展为超临界吸附模型,利用相对误差评价各吸附模型修正前后对页岩中超临界甲烷等温吸附的拟合效果.通过分析模型拟合参数的物理意义,探讨了页岩的吸附特征及吸附机理.各吸附模型的拟合参数所反映的吸附机理存在一定的差异,其中多分子层BET模型(B-BET和T-BET)和Expand-Langmuir模型对部分页岩的拟合参数失去其物理意义,不适合用于页岩中超临界甲烷吸附特征研究,而Langmuir模型和D-A模型拟合的参数能反映页岩的吸附特征.对比页岩中超临界甲烷等温吸附拟合效果,各吸附模型修正后的拟合效果好于修正前,且Freundlich修正模型的拟合效果最差,Toth修正模型和D-R修正模型的拟合效果好于Langmuir修正模型,但总体上拟合效果不好,Langmuir-Freundlich修正模型和D-A修正模型的拟合效果较好.研究结果表明,D-A修正模型的拟合参数能更好地反映页岩中超临界甲烷的吸附特征,是描述页岩中超临界甲烷吸附特征比较理想的模型.   相似文献   

2.
为研究礁石坝页岩气在产层超临界条件下的吸附规律,利用页岩气等温吸附仪,以礁石坝露头页岩及产层页岩为吸附剂,以甲烷气模拟页岩气作吸附质,测试了不同温度(60℃、70℃、80℃)时,甲烷气吸附量随其压力(2~30 MPa)的变化规律。以过剩吸附量修正亚临界吸附模型(Langmuir、Freundlich、Expand-Langmuir,Langmuir-Freundlich,Toth,B-BET,T-BET,D-R,D-A)为超临界吸附模型,并利用相关系数法优选甲烷气超临界等温吸附最佳模型,阐述了页岩气吸附特征及温度、页岩类型对超临界吸附量的影响。实验结果显示,超临界条件下(温度:60℃~80℃、压力2~30 MPa),产层及露头页岩对甲烷气吸附规律均可用超临界D-A方程进行描述,在实验温度范围60℃~80℃,甲烷气在页岩上的超临界饱和吸附量随温度增高而下降,随页岩中黏土、斜长石含量升高而增大。可知,采用超临界D-A模型描述涪陵礁石坝地区页岩气吸附规律具有较好的准确性。  相似文献   

3.
页岩中的超临界甲烷等温吸附模型研究对于页岩气藏储量评估、生产动态预测和开发方案编制等具有重要意义。以超临界甲烷等温吸附理论和分子动力学模拟结果为依据,考虑不同尺度空间中吸附机制差异,以Dubinin-Astakhov(DA)微孔充填模型表征微孔中的甲烷分子吸附,以Brunauer-Emmett-Teller(BET)多分子层吸附模型表征中孔和大孔中的甲烷分子吸附,建立了DA-BET超临界甲烷等温吸附模型。在此基础上,结合高温高压实验数据分析了模型拟合方法和拟合效果,讨论了不同吸附机制对页岩中超临界甲烷等温吸附的贡献。研究结果表明:DA-BET超临界甲烷等温吸附模型可以高精度地拟合实验数据,计算出的吸附特征曲线满足唯一性,并且可以利用该模型预测高温条件下页岩吸附甲烷的能力;在低压阶段,甲烷分子以微孔充填吸附为主;温度、压力显著影响不同吸附机制对总吸附量的贡献,温度越低、压力越高,微孔充填吸附量对总吸附量的贡献越小。  相似文献   

4.
温度对页岩等温吸附/解吸特征影响   总被引:4,自引:0,他引:4  
采用川南地区龙马溪组页岩样品,设计页岩吸附/解吸实验,研究不同温度下页岩的等温吸附/解吸特征。不同温度下页岩吸附/解吸特征实验结果表明,温度影响页岩的吸附量以及解吸量,温度升高,页岩的吸附量减少;页岩的吸附曲线和解吸曲线不重合,解吸曲线滞后,其热力学原因在于页岩吸附过程的等量吸附热大于解吸过程的等量吸附热;Langmuir模型与解吸式模型分别能很好地描述等温吸附和解吸过程。利用等量吸附热曲线可以预测不同温度下的页岩等温吸附和解吸曲线,理论计算结果与实验结果误差较小。页岩气在生产过程中为解吸过程,页岩气的解吸规律直接影响页岩气井的产量,页岩气产能预测以及数值模拟中应该考虑用解吸模型。  相似文献   

5.
页岩储层的温度、压力高于气体的临界温度和临界压力,气体在页岩上的吸附属于超临界吸附。针对常规吸附模型(R-L、LRC、E-L、E-F)计算得到的绝对吸附量,不能更精确的表征等温吸附实验得到的过剩吸附量问题,引入过剩吸附量对常规多组分吸附模型进行修正。采用非线性拟合的方法得到拟合参数,利用相对误差分析常规吸附模型和超临界吸附模型的拟合效果,研究超临界吸附模型描述页岩气吸附规律的适用性。研究结果表明:各个修正后的吸附模型拟合效果均优于修正前。修正的R-L吸附模型和修正的E-L吸附模型能较好用于描述两组分的超临界吸附特征;修正的E-L吸附模型可以更好地描述页岩气的超临界吸附特征。此次研究为准确、快速预测页岩气藏超临界吸附特征提供了重要的参考。  相似文献   

6.
页岩纳米孔隙中超临界甲烷的吸附相密度特征是明确页岩真实含气量的基础。基于伊利石纳米孔隙中甲烷吸附相的分子模拟数据,在温度333.15~423.15 K和压力0~90 MPa区间内,分别利用Langmuir三元模型法、过剩吸附曲线截距法、密度剖面积分法计算了甲烷吸附相的密度和绝对吸附量,分析温度、压力和孔径对甲烷吸附相的影响规律,系统检验甲烷吸附相密度计算方法的合理性。研究表明:1)温度的升高减弱了甲烷受到的孔壁吸引作用,降低了甲烷吸附相的密度和绝对吸附量;2)甲烷吸附相的密度和绝对吸附量随压力增大而增加,深层页岩中地层高压对甲烷吸附相的密度和绝对吸附量仍有重要影响;3)受甲烷吸附相扩展和孔壁耦合吸引作用影响,甲烷在2 nm和4 nm孔隙中的吸附相密度和绝对吸附量更大;4)基于分子模拟的积分法适用于深层页岩纳米孔隙中甲烷吸附相密度的确定和绝对吸附量的校正。研究结果对页岩气储量准确评价具有重要意义。  相似文献   

7.
利用已知埋深储层在一定温度下甲烷吸附特征,预测深部或浅部储层不同温度和不同压力条件下的吸附能力,对页岩气藏的勘探开发具有重大实用意义。基于Polanyi吸附势理论与Langmuir吸附理论,揭示了温度对吸附曲线的影响规律,提出了"仅利用一条等温吸附曲线预测其他温度吸附曲线"的方法。利用本研究方法,在龙马溪组页岩S1室内实验30℃吸附数据的基础上,预测出45~120℃吸附曲线,同时,结合实际储层压力梯度与地温梯度,量化了储层埋深与页岩吸附能力关系曲线。验证结果表明:页岩S1在不同温度下的吸附曲线预测结果与实验数据基本吻合;且预测的等温吸附曲线符合Clausius-Clapeyron等量吸附热理论,从而可以仅利用一条等温吸附曲线计算出该页岩样品吸附热,将为高效评估储层条件下页岩吸附气含量奠定理论基础。  相似文献   

8.
泥页岩储层等温吸附测试异常探讨   总被引:2,自引:0,他引:2  
页岩气与煤层气的等温吸附特征既有相似性,又存在较大差异。目前页岩气等温吸附测试仍沿用煤层气相关测试规范,没有针对页岩气的等温吸附实验仪器。泥页岩储层等温吸附实验中普遍存在等温吸附曲线异常的现象,因此对常见的泥页岩储层等温吸附曲线异常现象进行了归纳,分析了导致异常的原因,并提出相应的改进建议。研究结果表明,在高压段,地层条件下由于甲烷处于超临界状态,吸附态气体不发生液化凝聚,造成测试曲线明显偏离Langmuir等温吸附模型,且特征参数失真,因而基于凝聚机理的Langmuir等温吸附模型在高压段不再适用,但该异常可通过模型改进或实验数据校正来消除;在低压段,通常由于泥页岩储层的吸附气含量远小于煤层气,而测试仪器精度难以满足要求,或泥页岩储层粘土矿物含量较高,在预处理中与水发生反应而影响吸附特征,可尝试通过增加测试样品量、预处理后充分脱水等方法来减少异常现象的发生。  相似文献   

9.
同一样品在不同干燥温度处理后的对比实验显示,在110℃干燥条件下页岩的失水率高于60℃的失水率; 而110℃干燥的页岩样品甲烷吸附量也显著高于60℃干燥条件下的甲烷吸附量。可见,干燥温度显然是影响页岩甲烷吸附的一个重要因素。尽管页岩的甲烷吸附量受干燥温度的影响,但同一个样品的甲烷吸附曲线形态基本相似,显示干燥温度主要影响到页岩吸附量, 但并不影响页岩吸附机理,这表明,较高干燥温度下由于水分的驱除增加了页岩吸附的孔隙。  相似文献   

10.
如何描述高温高压下页岩储层的吸附特征,以及如何利用实验室测定的一个温度下的等温吸附曲线,预测其他温度条件下的等温吸附曲线,对页岩气藏的开发评价具有重要意义。基于DR吸附势模型,建立了适用于高温高压条件下的等温吸附曲线方程,同时该方程可以很好地预测不同温度条件下的等温吸附曲线。利用该方法,对鄂尔多斯盆地页岩120℃、30 MPa等温吸附实验数据取得了很好的拟合效果,同时预测出20~100℃吸附曲线。预测结果表明温度对绝对吸附量的最大吸附量没有影响,仅影响绝对吸附量随压力变化的增长速度,但温度会大幅影响过剩吸附量的最大值和高压时的下降趋势。  相似文献   

11.
页岩吸附气含量的准确测试对于储量评价及开发方案编制等具有重要的意义,但过去在计算地层压力条件下的吸附气含量时,未考虑过剩吸附量和绝对吸附量之间的差异。为此,基于重量法等温吸附实验,得出了以下认识:①当考虑吸附相体积的存在时,等温吸附实验并不能直接测得甲烷的实际吸附量(绝对吸附量),实验测得的应为过剩吸附量;②当压力在10 MPa左右时,过剩吸附量达到最大值,此后随着压力的增大而减小,这一现象是超临界甲烷过剩吸附量的本质特征。为了将过剩吸附量转换为绝对吸附量,提出了计算甲烷吸附相密度的改进方法。改进后的方法对吸附实验数据的拟合效果更好,吸附相密度的计算结果也更加合理。进而对绝对吸附量进行校正,发现绝对吸附量与过剩吸附量的差值随着压力的增大而增大,如果采用低压条件下的实验吸附曲线直接进行页岩吸附能力的评价,将严重低估页岩气储层的实际吸附能力,由此提出了应用过剩吸附量和游离气量计算页岩气地质储量的新方法。结论认为:过去用老方法计算得到的页岩含气量明显大于新方法,有可能高估了页岩气藏的地质储量。  相似文献   

12.
甲烷在活性炭上的超临界温度吸附实验及理论分析   总被引:1,自引:1,他引:0  
为研发ANG吸附剂,本文选择比表面积为2074m2.g-1的活性炭SAC-02,在温度区间263.15K~313.15K、压力范围0 MPa~8MPa,应用Setaram PCT Pro E&E测量甲烷在SAC-02活性炭上的吸附等温线,并由D-A方程、Clausius-Clapeyron方程和Virial方程标绘分析了实验数据。结果表明,当压力高于0.08MPa时,确定参数后的D-A方程预测实验数据的相对误差小于5%;甲烷在SAC-02活性炭上的等量吸附热反映了甲烷在能量非均匀表面吸附的特点,数值为13.99kJ.mol-1~17.57 kJ.mol-1,极限吸附热随温度呈线性变化,其平均值为19.43kJ.mol-1。  相似文献   

13.
蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力   总被引:3,自引:0,他引:3  
以蜀南地区龙马溪组下部富有机质页岩为研究对象,通过场发射扫描电镜(FE-SEM)、低压氩气吸附实验和重力法高压甲烷吸附实验,研究页岩孔隙结构特征及超临界状态下页岩储层的甲烷吸附能力,并讨论了页岩孔隙结构对甲烷吸附能力的影响。研究表明,蜀南地区龙马溪组富有机质页岩主要发育有机质孔隙,页岩孔隙结构非均质性强,比表面积为16.846~63.738 m2/g,孔体积为0.050~0.092 cm3/g,微孔和介孔贡献页岩90%以上的比表面积,介孔和宏孔贡献页岩90%以上的孔体积。甲烷在地层条件下处于超临界状态,过剩吸附曲线在约12 MPa时出现极大值,随后开始下降。使用修正过的四元Langmuir-Freundlich (L-F)方程拟合高温甲烷过剩吸附曲线,拟合效果较好,相关系数大于0.997。页岩饱和吸附量为0.067 0~0.220 2 mmol/g,不同页岩样品吸附能力差异明显。海相富有机质页岩中,随着有机质含量的增大,有机质孔隙数量增多,且页岩中微孔比例增大,微孔的吸附能力远大于介孔和宏孔,故页岩吸附能力增强。有机质含量是影响蜀南地区海相富有机质页岩孔隙结构和甲烷吸附能力的主要因素。  相似文献   

14.
页岩气物质平衡方程中,通常采用langmuir等温吸附方程表征吸附气量,但langmuir等温吸附方程的使用条件并不适合异常高压页岩气藏.鉴于此,针对异常高压页岩气藏的单井控制储量计算的问题,基于物质平衡方程的基本原理,考虑页岩气的多层吸附、超临界吸附、异常高压三重影响,引入修正BET吸附模型,表征页岩气的吸附特性,建...  相似文献   

15.
研究页岩中甲烷气体的等温吸附规律,是页岩气勘探开发研究的基础工作,近年来的相关研究已经取得了一定成果。然而在众多的吸附曲线实验结果中,异常曲线的数量却占据了相当的比例,部分岩心的等温吸附曲线在高压段下拐,甚至出现负吸附值现象。通过多组等温吸附实验结果分析,认为曲线在高压段下拐是正常现象,但也存在不合适的计算及实验方法,其主要问题包括:计算过程中没有区分绝对吸附量和过剩吸附量的差别,实验中没有考虑吸附相体积的影响,不适当的甲烷自由体积测定方法,以及设备系统误差的影响等。利用Langmuir等温吸附模型,建立了三元Langmuir方程,该模型在给定吸附相密度的情况下,选取甲烷自由体积作为未知参数;利用迭代法或Matlab软件计算自由体积、Langmuir体积和Langmuir压力。基于三元Langmuir模型所计算的甲烷自由体积,与氦气所测自由体积具有良好的可比性,采用该方法能更好地修正以前的曲线异常现象。   相似文献   

16.
为完善页岩等量吸附热计算方法,明确页岩吸附超临界CH4的热力学特征,选用温度区间为26.85~199.85 ℃、压力范围为0.08~14 MPa的页岩等温吸附数据,系统检验常用吸附相密度计算方法的合理性,并基于绝对吸附量分析等量线标绘法的适用范围及页岩等量吸附热特征。结果表明:①经检验,常用的吸附相密度计算方法中Ozawa经验公式法适用于较宽温压范围内的绝对吸附量校正;②Lnp-1/T曲线在温度区间为149.85~199.85 ℃且nab为0.103 8~0.280 0 mmol/g时不具有线性特征,因此该温度及吸附量范围内等量线标绘法不再适用,同时Lnp-1/T曲线的nab取值应当与Lnp-nab曲线保持一致,以此获得的等量吸附热曲线才能全面地反映吸附过程的热力学特征;③页岩吸附超临界CH4的等量吸附热随着吸附量的增加呈现先增大后减小的非单调变化,表明在吸附早期,CH4分子间的相互作用力对等量吸附热的影响占主导,当吸附量增加到一定程度后,页岩表面的非均一性占主导。  相似文献   

17.
考虑地层温度和压力的页岩吸附气含量计算新模型   总被引:4,自引:0,他引:4  
页岩气在页岩储层中的赋存方式主要以吸附和游离为主,页岩吸附气含量是页岩气资源评价和目标区优选的关键性参数,也是评价页岩是否具有开采价值的一个重要标准。通过室内不同温度下的等温吸附实验,获得页岩等温吸附特征曲线及Langmuir体积和Langmuir压力值,分析温度对页岩吸附气含量的影响程度,利用Langmuir模型计算地层压力条件下的吸附气含量。根据温度、压力、TOC值、RO值与吸附气含量之间的关系,建立考虑地层温度、压力、有机碳含量和成熟度4个因素的页岩吸附气含量计算新模型。新模型可计算任意埋藏深度下的页岩吸附气含量,埋藏深度越大,页岩吸附气含量越小。最后应用某一页岩气藏基础资料进行实例分析,建立得到的温度、压力、TOC值、RO值与页岩吸附气含量的复相关系数可达0.9以上。通过新模型计算未知页岩吸附气含量的页岩,计算结果准确可靠,能正确评价页岩气资源量,可以作为一种计算页岩吸附气含量的新方法。同时采用新的页岩吸附气含量计算模型,弥补了目前普遍采用没有考虑地层温度的等温吸附实验方法所获取吸附气含量的不足,具有重要的现实意义。  相似文献   

18.
甲烷超临界高压吸附等温线研究   总被引:11,自引:2,他引:9  
从实验测试吸附等温线数据的原理出发 ,提出了静态容积法测试吸附等温线数据产生的相对吸附量与绝对吸附量的概念并推出了它们之间的关系式 ,指明了高压下等温线出现最大点是由于气相密度与吸附相密度之比值变大造成静态容积法测试的相对吸附量与绝对吸附量明显不相等引起的。根据这个结论 ,首次提出以吸附相密度为参数 ,通过R -K方程计算气相密度 ,用Langmuir-Freundlich(L -F)方程表示绝对吸附量的超临界高压吸附等温线模型。将模型应用于静态容积法测试的具有最大吸附量的甲烷在活性炭上超临界高压吸附等温线数据回归 ,模型对实验数据的拟合相关系数R均在 0 99996以上。模型回归所得的参数能准确反映L -F方程的特性 ,同时给出的超临界甲烷吸附相密度同文献报道值一致。本文提出的超临界高压吸附等温线模型没有使用假设的超临界吸附极限压力来代替超临界气体本身不具有的饱和蒸汽压 ,方程形式简单 ,参数意义明确 ,使经典的吸附理论亦可以成功地解释静态容积法测试的超临界高压吸附等温线  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号