首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
智能完井技术是一项集动态监测、实时控制与生产优化为一体的系统技术,在复杂结构井、油气藏复杂井和海上油气井的优化生产、控制开采、减少修井作业及提高采收率等方面具有显著的优势。在介绍智能完井技术的工作原理、装备结构和特点基础上,重点就研制的关键技术装备,包括井下多级液控遥控阀、穿越式封隔器、动态监测系统等进行了阐述。现场试验结果表明,研制的智能完井系统可以实现井下动态实时监测及各层段流量控制,井下液控阀可以实现遥控功能,多级调节流量的效果明显;光纤动态监测系统读取数据准确、稳定、可靠,满足现场要求;智能完井管柱顺利下井并投产,完井工艺通过了现场检验。  相似文献   

2.
智能完井系统通过传感器和地层滑套开关实现了对产液层的监测和控制,对油层实现了多层合采、层间优化、单采等多种模式的切换。介绍了国际上通用的智能完井井下液压控制系统,并结合分层开采智能完井的技术要求,提出了一套智能完井井下流量控制解码器的设计方案,通过操纵井下多目的层滑套的开关从而实现分层选择和控制。设计的数字液力解码器利用3条液压管线可实现最多6个生产层滑套的控制。该方案简化了现场安装液控管线的操作,有助于推动智能井配套工具的标准化。  相似文献   

3.
海上油田开发以水平井大斜度井居多,开发井层数多,层间矛盾大。针对目前开发方式无法实现对油层进行精细开采的现状,提出了海上油田液控智能采油工艺技术。该工艺利用八挡位井下液压滑套配合液压解码器可以实现多层的精细开采,同时设计的水嘴结构可以实现多层流量精细的调节与大产液量的调节。井下液压解码器利用排列组合的原理,在降低管线数量的同时,实现了井下层位的选择与高压控制液引导,并通过计算管线摩阻,为现场管线的选择提供了理论支撑。试验结果表明:油嘴结构可以实现0~800 m 3/d的精细调节;井下液压滑套换向功能可靠,换向压力稳定在2 MPa左右,可实现0~2800 m 3/d的产量调节。该工艺不受水深和井斜等限制,最多实现了6层井的精细开采,提高了作业效率,可为海上油田精细化开采提供技术保障,同时也可为深水油田的开发提供技术储备。  相似文献   

4.
为了解决“三低”致密气藏积液气井的排水采气问题,同时解决现有泡沫排水、速度管柱及柱塞气举等排水采气工艺不能根据井下实际工况进行精准排水采气,且井筒积液排除不彻底、排液效率低等问题,研制了致密气藏井下智能排水采气装置。该装置采用井筒温度梯度的温度值作为控制参数,采取小闭环控制技术,实现智能排水采气。试验结果表明,智能排水采气装置实现了精准探液面、逐级定量排水功能,排水效率高,使井筒产气量显著提高。  相似文献   

5.
智能技术优化油气生产   总被引:1,自引:0,他引:1  
智能完井技术,就是利用永久式井下监测和流量控制设备连续监测和控制油井流动系统.目前,该技术在油气井和油藏动态管理中已得到广泛应用.智能井的应用大大超出了原来该技术的设计目的,无需采油修理作业及相关的费用,只需通过安装与地面连接的永久式井下监测和流量控制装置就可以实现测量和控制.除了这些优点之外,该技术还用于优化气举和电潜泵系统、防砂、油气层保护、气锥问题以及消除窜流等.本文对现有的智能技术进行了总结,描述了从数据获取到优化控制的生产优化工作流程,讨论了针对不同完井类型和泄油体积特征部署该工艺的有效方法.油田实例表明,智能完井的监测功能和控制功能可以独立应用.但是,如果监测和控制系统相互结合的话,智能系统的效率会得到极大的提高.监测可以直接引导控制方案,使控制结果生效.同样,井下监测需要使用控制系统,以便于监测系统识别的问题能得到恰当的处理.文章中提出的方法有助于实现智能完井技术价值的最大化.  相似文献   

6.
液控滑套是智能完井系统中的核心工具,通过滑套开、关及开度变化控制不同层段的产液量。如何计算设计开关压力是智能滑套设计中需要解决的重要问题。论文分析了智能滑套开关压力与摩檫力的关系,并分析了影响摩檫力的主要因素,通过计算分析推导了滑套开关压力的计算公式,并计算了自行研制的液控滑套的开关压力。通过多次实验验证,理论计算和测得的滑套平均开关压力仅相差4%,验证了计算分析的准确性,对后续液控滑套的优化设计和智能完井系统在国内外油气田的应用具有参考意义。  相似文献   

7.
《石油机械》2016,(12):32-37
井下流量控制阀是智能井实现智能开采的核心工具,在介绍液控光纤监测型智能完井系统IC-Riped所使用的井下液控多级流量控制阀结构和工作原理基础上,对控制阀在3 000 m长6.35 mm液控管线驱动下的操控及运动进行了分析,包括控制阀运行压力、进油流量、回油流量和动作时间等参数的变化。通过试验数据和理论推导分析了管线压力损失Δp的影响因素,结果表明液压油在管线中的流动可近似为层流,得到Δp与进油流量Q的定量关系,两者近似呈线性关系。这些数据和分析为实现控制阀井下精确控制提供了扎实的试验和理论支撑,并为完井井下流量控制系统的优化提供了依据。  相似文献   

8.
渤海油田储层主要以疏松砂岩为主,需要实施分层配注提高采收率,而常规注水工艺受井斜和注水层数等限制,存在作业时效低、施工成本高等问题。为此,渤海某油田M井首次尝试采用了智能注水完井技术进行分层配注,实现了注水工艺智能化。该技术通过井下压力传感器和液控滑套,进行数据实时采集和流量控制,通过地面数字化监控系统实现远程快速、准确调控,可实现井下储层状态实时动态监测和井下工具的远程控制,从而达到精细化注水、改善油藏管理和节省修井时间的目的。该技术在渤海油田的成功应用,为海上无人平台分层注水提供了新思路。  相似文献   

9.
智能式井下节流器满足智能完井和数字化油气田技术的自动化和数字化要求,是未来井下节流器发展的趋势。针对井下智能节流工艺技术需要,采用CAN总线技术构建一套适用于井下智能节流器的控制系统。介绍了CAN总线的技术原理;详细阐述了构建基于CAN总线的伺服控制系统体系结构和控制模式、控制系统的数据逻辑结构模型以及基于分层设计法的系统软件架构模块;给出了整个控制系统的软件运行实例和操作流程。实验反馈数据表明,该控制系统能实时精确地对井下电机完成远程控制,满足智能井下节流器要求的动力控制需求。该系统设计方法对其它智能化井下工具的研发具有一定启发意义。  相似文献   

10.
为了降低分层采油中的生产维护成本,结合无线射频和单片机技术,研制了一种投球式井下智能分控开关控制系统,并在室内对其进行了功能试验。在分析各类井下开关系统优缺点的基础上,明确了研制思路:在地面通过投入信号小球的方式来实时灵活地控制井下目标油层开关阀的开启/关闭,实现对目标油层的有效控制。确定了总体设计方案:在油管内先后投入2个信号小球,先投入的信号小球用于井下控制系统的唤醒,后投入的信号小球携带开启/关闭目标油层开关阀的指令,用于控制目标层位开关。室内模拟试验表明,投入唤醒信号小球后井下控制器由待机模式变为工作模式,投入油层控制信号小球后,各目标油层开关阀能按预定指令正确开/关,各层通信、开关控制均满足设计要求。研究认为,研制的井下智能分控开关系统能够实现对目标油层的有效控制和降低油层间的干扰,从而实现分层采油、提高采收率。   相似文献   

11.
《石油机械》2016,(1):59-61
为了达到液控智能井在需要检泵或出现控制管线拔断等故障需要维修时,不用将井下工具全部提出的目的,研制了一种适合于油、气、水开采的智能井井下对接工具。该工具包括留井对接总成和留井密封总成,通过该工具将井下生产管柱分离,并进行快速准确地对接。对接采用棘爪分瓣式螺纹结构,对接强度高,对接方便、可靠;采用球阀关闭原理,保证6个传压通道同时处于密封状态。实验室的测试结果表明,该工具具有非常可靠的密封能力,能够满足深海智能井的开采要求。智能井井下对接工具的研制有利于智能井技术的大面积推广。  相似文献   

12.
智能井技术     
《石油钻探技术》2006,34(1):31-31
智能井就是在井中安装了可获得井下油气生产信息的传感器、数据传输系统和控制设备,并可在地面进行数据收集和决策分析的井。通过智能井可以进行远程控制,达到优化产能的目的。智能井系统的主要部件包括:1)流动控制装置,通常是控制流体流出/入油藏的水力内部控制阀;2)直通层间隔离封隔器,使水力控制管线和地下控制阀连通;3)井下传感器,向地面提供压力、温度和流量数据;4)控制系统,包括水力/电力地面系统,用以监测和控制地面条件。  相似文献   

13.
智能完井系统通过对井下产层流体参数的监测和控制,可以实现多层合采、层间优化、单采等多生产模式的任意切换。目前提供智能完井服务的公司都推出了以液压驱动为主要控制形式的井下流量阀控制系统,并在油田生产中成功应用。结合智能完井的技术要求,提出了一套井下流量控制液压系统的设计方案,可实现井下多目的层的分层选择和控制,利用3条控制管线,即可实现目前油田生产所需的2~6层的开发需要,可以减少安装过程中连接穿越管线的繁琐工作,为智能完井配套工具的标准化提供了支持。  相似文献   

14.
随着油田数字化、智能化的发展,以缆控智能分注工艺为代表的智能分注技术势必规模化应用。但在前期的现场试验中,流量调节阀出现卡阻的现象,导致无法调节井下分层注入量,只能起出管柱重新作业。通过优化缆控智能配水器主体结构,设计了可投捞调节阀和测控线路,研制了流量调节阀可投捞式智能配水器; 通过室内试验和现场试验验证了可投捞式缆控智能分注工艺的可行性。室内投、捞试验各50次,投、捞成功率100%,实现了流量调节阀通过下入投捞仪可整体捞出,修理或更换后重新投入智能配水器内使用。现场试验5口井,投、捞后井下各智能配水器运行正常。可投捞式缆控智能分注工艺提高了智能分注井井下分层注水管柱整体工艺的灵活性和可靠性,降低了缆控智能分注井的运行维护成本,为缆控智能分注技术的推广应用提供技术支持。  相似文献   

15.
为了满足海上水平井和大斜度井分层开采控制需求,实现远程智能分采和不动管柱分层调配、酸化、测试测压等目的,通过多级智能流量控制阀、多孔穿越过电缆封隔器、可穿越式定位密封、可穿越式隔离密封、多线缆保护器及地面控制系统等关键工具研发或优化,创新形成了液控智能分采工艺管柱和技术。该技术通过地面控制系统远程控制N+1根液控管线,实现井下N个生产层位的生产调节和控制,适用于垂深4 000 m、分层数6层以内的油井分采控制,满足水平井、大斜度井和深井不动管柱调配需求。渤海C油田C19井的现场应用结果表明,该技术解决了C19井3个开发层位之间流体性质差异大、层间矛盾突出等问题,投产产量达到配产要求。该技术实现了水平井和大斜度井的分层开采与控制,为渤海油田剩余油挖潜提供了更多的技术手段。  相似文献   

16.
海上油田开发以水平井大斜度井居多,开发井层数多,层间矛盾大,需要对层间生产动态进行实时控制。井下液压分层控制方式具有可靠性高、动作力大的特点,但受管线数量影响,工艺适用层数受限。通过井下解码技术减少了多层控制管线数量,提高液控工艺适用性。研制的井下解码器采用滑阀结构形式,通过不同管线压力序列,实现了层位的识别和压力液的引导,利用3条管线可以实现井下6个层位的控制,满足了分层精细化控制的需求。实验结果表明,在指定的管线接入顺序下,解码器只能在指定的压力序列下打开,保证层间互不干扰。同时对液压油传导时间进行了实验验证,在20 ℃环境下,采用壳牌得力士22号液压油,在3 000 m长,直径6.35 mm液控管线中,5 MPa液压油传导至末端时间约为240 s,为井下液控滑套的控制提供了理论基础。  相似文献   

17.
《石油机械》2017,(10):81-85
为了对油气开采过程进行精细化监测和控制,提升油田现代化管理水平,最终实现低成本下油气井的高效开采,研究并开发了缆式电控智能完井系统EIC-Riped。该系统中的电控配产器集井下流动控制与数据测量功能于一身,油嘴开度可无级调节;井口控制器调节油嘴开度,采集井下温度和压力数据,并将数据无线传输到远程测控系统。吐哈油田的现场试验结果表明:EIC-Riped系统可实现多层段油气井井下生产动态的调控与温度和压力的监测,具有实时化和远程化等特点,满足油井生产管理现代化的要求。该系统对油井找水、堵水和增产提效具有较高的应用价值。  相似文献   

18.
针对现有井下工具测试系统存在功能单一、操作复杂、运行能耗高以及检测范围窄等问题,结合川渝气田井下工具应用环境特点和性能测试需求,研制了DTTS-200-140高温高压井下工具试验系统。该试验系统具备在压力140 MPa、温度200℃、拉压载荷300 kN和扭矩载荷10 kN·m条件下开展井下工具性能测试的能力。试验井筒采用悬挂内衬套方式并利用压环快装结构和组合式密封替代螺纹连接,提高了系统密封可靠性,采用智能温控技术在保证热效率的同时最大程度地实现了节能降耗,配置液压式自动锚定装置提升了力加载试验机的稳定性和安全性。利用试验系统开展了可钻式复合桥塞和延迟开启式套管趾端滑套性能试验,获取了复合桥塞坐封力和套管趾端滑套开启压力值等关键数据。试验结果表明,复合桥塞坐封及密封性能符合设计要求,滑套的延迟时间和开启压力值与设计相符合,充分检验了试验系统性能的可靠性。该系统的研制成功为井下工具入井前的性能检测和质量评估提供了技术支撑。  相似文献   

19.
井下闭环可变径稳定器的工作原理及应用研究   总被引:2,自引:0,他引:2  
余志清 《石油学报》2002,23(3):95-97
井眼轨迹井下闭环控制技术是当前国内外石油钻井的前沿技术,将该技术与随钻测井技术结合,能实现地质导向技术.钻成大位移井必须依靠井眼轨迹控制技术,研制的井下闭环可变径稳定器是实现该项技术的关键.本文着重论述了井下闭环可变径稳定器的结构、工作原理及其控制井眼轨迹的方法.井下闭环可变径稳定器的研制及现场的初步试验成功,为解决我国大位移井问题,特别是为滩海油气勘探、提高钻井机械钻速、降低钻井成本提供了一条有效的途径.  相似文献   

20.
分层注水是大庆油田开发最重要的特色技术,为油田高效开发提供了技术支撑。随着油田进入特高含水期,剩余油高度分散,油水关系复杂,注水合格率下降快,稳油控水难度加大,为解决日益增加的注水井测调工作量与有限的测试队伍间的矛盾,满足油田精准开发需求,研制了缆控分层注水技术。该技术将压力监测系统、流量监测系统、流量控制系统置于预置电缆智能配水器中,在办公室端由技术人员在服务器软件上发出控制指令,通过油田生产无线网络发送至地面控制箱,应用电缆载波技术由电缆传输指令至智能配水器,实现实时通信,获取井下分层参数信息,控制井下分层注入量。通过建设4个智能分注技术示范区,验证了不同开发矛盾下工艺适应性。缆控分层注水技术提高了吸水厚度比例,有效控制了含水上升率和自然递减率,增油效果明显,推动了油田数字化转型、智能化发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号