首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
天然气掺氢输送是实现大规模、远距离氢能转运的主要手段之一,但混氢天然气在放空过程中存在爆轰或爆燃的风险,对放空管壁施加的超压过大还会造成管壁破裂。因此,亟需明晰混氢天然气放空自燃与流场演化过程,进而量化放空管壁的一次超压。为此,利用计算流体力学方法数值模拟了混氢天然气管道放空自燃过程,对比分析了不同掺氢浓度条件下对自燃及压力波传播的影响规律,揭示了混氢天然气在阀门通道和放空管中的爆燃机制。研究结果表明:(1)高压气体在阀门通道内以压力波形式传播并不断地碰撞反射与叠加,形成马赫环结构,加热气体使温度升至自燃点,并触发自燃;(2)在阀门通道和放空管内均出现了爆燃现象,但压力波在放空管内能量迅速衰减,一段距离后温度大幅降低,气体不再燃烧;(3)掺氢比越大,压力波传递速度越快,自燃触发的时间越短,对放空管壁产生的一次超压也越大。结论认为,在确定的泄放压力与阀门开度工况下,降低掺氢浓度可有效减轻爆燃风险和减小壁面超压,实际工程中需结合输送经济成本和安全风险控制掺氢量在合理的浓度范围。混氢天然气管道放空自燃过程数值模拟分析取得的新认识有助于指导掺氢天然气管道的安全运行,将助力于绿色氢能的大规模混合...  相似文献   

2.
基于欧拉-欧拉双流体模型,结合凝结相变理论建立气体自发凝结数值模型,对所设计Laval喷管内硫化氢气体的自发凝结特性进行模拟研究,分析入口压力、温度及背压对凝结过程的影响。结果表明:气体高速膨胀产生的低温效应使天然气中硫化氢气体发生自发成核及液滴生长现象,气相中硫化氢含量随之降低;增大入口压力或降低入口温度将使凝结发生位置前移,促使更多的硫化氢从气相中凝结出来,过低的入口压力或过高的入口温度将使硫化氢气体无法在喷管内完成自发成核过程。随着背压的升高,激波在喷管内产生并逐渐前移,激波的产生会破坏凝结所需冷凝环境,造成凝结液滴的再蒸发,应合理选择背压以避免激波对硫化氢气体凝结过程的影响。  相似文献   

3.
天然气地下储气库在能源结构调整及天然气的调峰中起着决定性的作用。用CO_2作储气库垫层气既可实现碳的地质埋存,又可提高天然气采收率,节约资金。在储气库注采运行过程中,储气库储层压力、流体饱和度等会发生周期性变化,流体渗流能力不断变化,作垫层气的CO_2气体与天然气的混气问题将不可避免。为指导储气库最优运行控制,必须研究垫层气与天然气混气现象的生成与发展,分析其主要影响参数及影响方式。采用数值模拟方法建立储气库机理模型,对垫层气注入方式、注入比例、储层渗透率等主要因素对垫层气与天然气的影响进行分析。结果表明,垫层气注入量、混气压力、注采速度等因素对混气有着明显的影响。研究结果对于储气库的最优运行控制,避免过度混气,影响采出气质量具有指导意义。  相似文献   

4.
陈思维  杜扬 《天然气工业》2006,26(10):137-139
管道内可燃气体的防爆抑爆研究对于石油及天然气工业的安全生产具有重要意义。以RNG 湍流模型及EBU Arrehnius燃烧模型为基础,建立了管道内可燃气体单步化学反应湍流爆炸模型;并以有限体积法求解了爆炸流动及反应控制方程,从而对二维管道中惰性气体抑制可燃气体爆炸的过程及规律进行了数值模拟。模拟结果与实验数据有着较好的吻合性,可为燃气管道中惰性气体防爆抑爆技术的工艺实施、系统设计和关键参数计算提供理论依据。  相似文献   

5.
针对页岩气渗流过程模拟难度大的问题,运用分形理论描述页岩气储层微观结构,基于吸附层多层吸附现象,考虑了压力敏感效应和真实气体效应,推导了微纳米页岩气的质量流量表达式,建立了页岩气微纳米分形表观渗透率模型。通过数值模拟与昭通页岩气田A1井实际生产数据进行对比,验证了模型的准确性。结果表明:孔道表面吸附气层数对压力变化的敏感性较高,对温度变化的敏感性较低;受压力敏感效应的影响,页岩气扩散阻力随之增大,使得表观渗透率下降;随着气体压缩因子的增大,吸附层厚度增加,吸附区截面面积占比提高,同时,页岩孔道的压力敏感效应使得孔道直径减小,吸附气诱导流随之先减小后趋于平缓,使得页岩气整体表观渗透率减小。研究成果可为页岩气数值模拟提供部分理论基础,通过控制影响页岩气分形渗透的主控要素提高页岩气压裂开发采收率。  相似文献   

6.
深水天然气水合物层钻井时,水合物颗粒随钻井液上返过程中会随压力降低、温度升高而不断分解,管流相态、特征参数变化明显,对井控要求高。在天然气水合物动态传质分解基础上考虑管流速度、温度及压力对其分解的影响,建立了深水天然气水合物井筒气、液、固复杂介质非平衡相态条件下的多相流动求解模型,并采用数值模拟方法对天然气水合物分解过程中在不同机械钻速、钻井液排量和钻头尺寸下多相流动敏感性影响因素进行了分析,结果表明:天然气水合物摩尔分解速率随着分解反应的进行而降低,随着相对流速的变大而增大,随着环境压力降低而变大,随着环境温度降低而变小,总摩尔分解速率随着破岩粒径的降低而变大;随着钻头尺寸、机械钻速增大,环空流速增加,环空压力降低;随着钻井液排量增大,井筒流速增加,井筒压力升高。上述结果可为深水天然气水合物层钻井井下安全控制提供参考。  相似文献   

7.
天然气水合物注热开采数学模型   总被引:6,自引:2,他引:4  
根据热力学第一定律及天然气水合物分解机理,在合理假设基础上,建立了包括物质守恒方程、能量守恒方程、分解动力学方程及辅助方程的天然气水合物注热开采数学模型。对数学模型进行差分处理得到差分方程组,采用隐式求解压力、显式求解饱和度(IMPES)的方法,考虑天然气水合物分解的压力、温度平衡条件,对模型进行求解,据此编制了数值模拟器。数值模拟器很好地拟合了注热开采实验的产气速率和温度分布,验证了数学模型的有效性。数值模拟及注热开采实验分析表明,天然气水合物注热开采可分为自由气释放、水合物分解及边界效应3个阶段,水合物分解存在分解前缘,注入端一侧水合物大部分已经分解,出口端一侧水合物分解较少,饱和度较高。图5表1参11  相似文献   

8.
天然气管道处于泄漏燃烧状态时有可能引发管内天然气爆炸,爆炸流场受管道泄爆口强度的直接影响,但目前对于该方面的研究则较为薄弱。为此,选择内边界为80 mm×80 mm×600 mm的小尺寸矩形管道作为仿真研究对象,基于FLACS软件分析了管道在泄爆口承压泄爆、密闭、开口等3种工况下天然气爆炸火焰的传播特性,研究了泄爆口强度对管内爆炸压力、温度、火焰传播速度的影响规律。研究结果表明:①管道内甲烷/空气预混气体燃烧爆炸反应过程中,在泄爆口密闭的条件下,压力和温度上升至峰值后无明显下降趋势,而在泄爆口开口情况下,管道内压力迅速上升至峰值后急剧下降,温度上升至峰值后缓慢下降;②在泄爆口承压泄爆条件下,管道内压力和温度的变化趋势相似,均经过先上升至峰值后下降的过程,随着泄爆口承压能力的增加,管内压力峰值、温度峰值以及到达峰值的时间均增加;③压力峰值由大到小的工况依次为泄爆口密闭、泄爆口承压0.5 MPa、泄爆口承压0.3MPa、泄爆口承压0.1 MPa、泄爆口开口,温度峰值由大到小的工况依次为泄爆口密闭、泄爆口承压0.5 MPa、泄爆口承压0.3 MPa、泄爆口承压0.1 MPa、泄爆口开口,火焰传播速度峰值由大到小的工况依次为泄爆口开口、泄爆口密闭、泄爆口承压0.3 MPa、泄爆口承压0.5 MPa、泄爆口承压0.1 MPa。结论认为,泄爆口强度对管内爆炸压力与火焰传播速度的影响较为显著,而其对管内温度的影响则不明显。  相似文献   

9.
顺北一区矿场天然气资源丰富、油藏压力高、顶部剩余油富集,具备注天然气混相驱的开发潜力。通过注气流体相态模拟实验和油藏数值模拟,从注气原油相态、混相条件、注气方式等方面,论证顺北一区注天然气混相驱开发的可行性。研究表明,注CH4原油具有饱和压力低、体积膨胀系数大、混相压力低等优势;注CH4最小混相压力约为46.80 MPa,注伴生气最小混相压力较注干气约降低4.00 MPa。回注天然气,80%以上的井组可实现混相驱替;气水交替注入可延缓气水突破时间,提高驱替相波及系数,补充地层能量和实现均衡驱替,模拟3年可提高采出程度11.2%。  相似文献   

10.
针对文72沙三中油藏的特点,进行了注天然气驱油藏数值模拟。利用长岩心驱替实验模拟.对地层流体参数进行了校正;通过油藏数值模拟显示.注富化气可以降低原油的混相压力;应用数值模拟技术.对不同的层位、注入量、注入时间和注入方式进行了混相驱和非混相驱研究;数模结果证实.天然气驱能提高采收率15.98%。  相似文献   

11.
The afterburning effect of TNT and a desensitized hexogen RDX-Al explosive was studied in a defined gas volume under water. A double-layer container (DLC) filled with different gases (air, oxygen, and nitrogen) was used to control and distinguish the afterburning effect of explosives. After the charges in the DLC were initiated under water, the shock wave signals were collected and analyzed. It is shown that shock wave peak pressures are duly in compliance with explosion similarity law, pressure, and impulse histories for explosions in oxygen and air are greater than those recorded for explosions in nitrogen due to the afterburing reaction. Moreover, the afterburning energy was calculated. Results show that even though there is excess oxygen in the gas volume, the afterburning energy may not reach the theoretically maximum value. This result is different from that in confined explosion, where the presence of excess oxygen in the compressed gas filling a bomb leads to complete combustion of the detonation products.  相似文献   

12.
ABSTRACT

The thermal and shock sensitivities of plastic bonded explosive formations based on 2,6-diamino-3,5-dinitropyrazine-1-oxide (commonly called LLM-105 for Lawrence Livermore Molecule #105) are reported. The One-Dimensional Time to Explosion (ODTX) apparatus was used to generate times to thermal explosion at various initial temperatures. A four-reaction chemical decomposition model was developed to calculate the time to thermal explosion versus inverse temperature curve. Three embedded manganin pressure gauge experiments were fired at different initial pressures to measure the pressure buildup and the distance required for transition to detonation. An Ignition and Growth reactive model was calibrated to this shock initiation data. LLM-105 exhibited thermal and shock sensitivities intermediate between those of triaminotrinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX).  相似文献   

13.
地下密闭空间燃气爆炸冲击波传播规律   总被引:2,自引:0,他引:2  
油气管线在城市地下组成了密集的管网,并与地下暗渠、电缆沟等市政管涵地下密闭空间相邻或交叉。在燃气通过管线输送的过程中,由于泄漏而进入密闭空间并引起爆炸的事故时有发生且往往会导致较为严重的后果。为此,借助LS—DYNA非线性动力分析有限元软件,基于流固耦合与ALE多物质算法,建立密闭空间下燃气爆炸数值计算模型,探究了密闭空间燃气爆炸过程中爆炸冲击波的传播与衰减变化规律。数值计算结果表明:与将爆炸假设为理想点源爆炸不同,在密闭空间结构环境的限制作用下,爆炸冲击波最初以椭球状形式分布,在传播过程中逐渐向球状冲击波发展,并迅速衰减,最终在大气环境中沿密闭空间宽度方向上传播距离最远。根据爆炸冲击波超压幅值对人体的影响程度划分不同的伤亡等级,拟合数值计算结果得到了密闭空间爆炸冲击波传播衰减计算公式,据此可以准确划分密闭空间爆炸事故后果不同伤亡等级区域范围。  相似文献   

14.
平板形障碍物对气云爆烯威力加强作用   总被引:3,自引:1,他引:2  
利用一维球形流体力学方程导出了开敞空间可燃气云弱点火条件下爆燃过程的压力分布场,编制了求解压力场的计算程序,解释了平板形物体气云爆燃威力的加强作用.进行了乙炔-空气气云的爆燃实验,对计算结果进行了考核.计算结果与实验结果的偏差小于20%.  相似文献   

15.
This paper describes a one-dimensional model for natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing well. The approach accounts for the heat released by hydrate dissociation and convection–conduction heat transfer in the gas and hydrate zone. The system of governing equations is solved using a finite-difference scheme. For different well pressures and reservoir temperatures, the gas flow, the pressure and temperatures conditions in the reservoir are simulated. Distributions of temperature and pressure in the hydrate and gas regions and time evolutions of natural gas output also are evaluated. It is shown that the gas production rate is a sensitive function of well pressure. In addition, both heat conduction and convection in the hydrate zone is important. The simulation results are compared with the linearization approach and the shortcomings of the earlier approach are discussed.  相似文献   

16.
可燃气体在运输、储存、加工和使用过程中,因可燃气体泄漏而形成的气云爆炸事故,常常会造成巨大的人员伤亡和财产损失。研究气云爆炸的特性和威力,可防范事故,减小损失。中采用有限差分方法编制了求解可燃气云爆炸过程的定解方程的数值模拟程序。方程组中的源项由能量均匀加入法处理,爆炸场中的间断问题通过人工黏性模型处理。经开敞空间乙炔——空气气云爆炸实验结果检验,数值计算结果的偏差在13%以内。计算结果表明,气云半径越大,爆炸最大压力和压力增加速率越大;气云爆热越大,爆炸最大压力和压力增加速率越大。  相似文献   

17.
18.
���������ڿ�ȼ��ȼ��й��ʵ���о�   总被引:3,自引:0,他引:3  
在直径为1 m的球形容器中,采用中心点火方式,对液化石油气进行了大量密闭燃爆和燃爆泄放的实验,得出了液化石油气最大破坏力的浓度范围5%~6%、密闭下燃爆最大压力与初始压力呈线性关系,并基于不同条件下燃爆泄放实验,通过量纲分析将泄放面积、容器内表面积、容器体积、泄放压力及初始压力等关联成燃爆泄放状态准数,建立了燃爆泄放最大超压与泄放准数之间关系式,关系式覆盖的体积范围(0.029~213 m3),内部初始压力范围(0.1~0.4 MPa),泄放压力与初始压力比(1~2.5)、容器长径比(1~2),在该范围内关系式与实验结果吻合较好。  相似文献   

19.
GERG-2004等方程用于CH_4-H_2混合物比容计算   总被引:1,自引:0,他引:1  
利用含氢气体(如煤基合成天然气和焦炉煤气)时,获取其准确的热物理性质数据很重要。采用GERG-2004方程和HYSYS使用的PR、RK方程,对不同配比的CH4-H2混合物在不同温度压力下的比容进行计算,并将计算结果与文献中的实验数据进行对比。结果表明,GERG-2004方程在130K、140K、159.2K温度,较高压力下,针对不同配比的CH4-H2混合物比容的计算结果基本能与实验数据相吻合,并且其计算精度高于采用PR方程和RK方程所得结果;在140K,0.1MPa~6MPa的温度压力范围,将GERG-2004方程的计算结果与PR方程和RK方程的计算结果相比较,但三种方程所得计算结果的准确性仍需要通过进一步获得实验数据来验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号