首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
大港孔店油田产生物表面活性剂本源茵研究   总被引:3,自引:2,他引:1  
从大港孔店油田分离出一株嗜中温产生物表面活性剂菌株dgbs25,经生理生化和16SrDNA分子鉴定,该茵与根癌土壤杆菌最为相近;该菌株在含有烃类物质的培养基中产生生物表面活性物质,其最适温度为42℃,最适pH值为7;产生的生物表面活性剂使培养液的表面张力从69.72mN/m下降到35.23mN/m,生物表面活性剂的产量为3.6g/L,对柴油的乳化活性最大达到68%,对液蜡的乳化活性可达到100%.该产生物表面活性剂菌可应用于微生物提高原油采收率(MEOR).  相似文献   

2.
从大港孔店油田分离出一株嗜中温产生物表面活性剂菌株dgbs25,经生理生化和16SrDNA分子鉴定,该菌与根癌土壤杆菌最为相近;该菌株在含有烃类物质的培养基中产生生物表面活性物质,其最适温度为42℃,最适pH值为7;产生的生物表面活性剂使培养液的表面张力从69.72mN/m下降到35.23mN/m。生物表面活性剂的产量为3.6g/L。对柴油的乳化活性最大达到68%。对液蜡的乳化活性可达到100%。该产生物表面活性剂菌可应用于微生物提高原油采收率(MEOR)。  相似文献   

3.
一种脂肽类生物表面活性剂的理化性质及其对原油的作用   总被引:21,自引:1,他引:20  
从大港炼油厂污水中筛选到一株地衣芽孢杆菌NK X3,在含糖培养基中培养可产生一种脂肽类生物表面活性剂 ,该生物表面活性剂在 pH 4— 1 2的范围内和 40 0 0mg/L的高钙离子浓度及 1 5%的高盐浓度下仍维持原有表面活性。更为显著的特点是在 1 2 0℃的高温下不失活。该产物可将水的表面张力由 76.6降至 35.5mN/m。其乳化活性值为 1 .50 ,临界胶束浓度 (CMC值 )为 30 .0mg/L。对高含胶质沥青质油的降粘率高达 50 %以上 ,增溶与脱附作用显著 ,可使油水互溶而形成水包油型乳化小滴。可使高含蜡油有效地乳化分散。这些特点有利于原油的增采和输送。  相似文献   

4.
微生物表面活性剂在稠油乳化降粘中的实验研究   总被引:7,自引:0,他引:7  
方法 利用不同的培养基对不同的菌种进行培养并改变温度等条件 ,对菌种进行驯化、培养 ,同时对其进行评价和对原油乳化能力进行测试。目的 获得某一菌株的代谢产品 ,分离检测和评价其表面活性剂的种类、含量和效果。结果 通过不同的试验条件 ,选出了一株产表面活性剂较多的菌株 ,可以使蒸馏水的表面张力由 88 0mN/m降到 39 0mN/m。该菌能在以液蜡为唯一碳源的培养基中生长 ,但产生的表面活性剂很少 ,而在含糖培养基中则产生较多的表面活性剂。经分离、提纯、分析为脂肽 (或脂蛋白 ) ,其产物水解后 ,经薄层层析测出主要成分为氨基酸和脂肪酸。结论 通过实验证明 ,微生物在合适的条件下进行新陈代谢 ,可以产生大量的表面活性剂 ,对原油具有较强的乳化、分散作用 ,在微生物采油技术的应用中非常重要。同时也为微生物采油的机理研究提供了可靠的数据和相应的评价方法。  相似文献   

5.
为了评价克拉玛依油田B21井区二类砾岩油藏驱油用HW表面活性剂的可行性,评价了表面活性剂界面活性、稳定性、乳化性能和模拟驱油性能。结果表明:HW表面活性剂质量分数为0.1%~0.5%时,界面张力在10-2 mN/m量级,最小界面张力为0.006 0 mN/m,该表面活性剂具有良好的稳定性,长期放置界面张力不发生明显变化,有利于通过降低界面张力提高原油采收率;表面活性剂的质量分数和水油比均对其乳化性能有显著影响,乳化能力随质量分数增加而增大,破乳后析出水较为清澈且界面清晰,有利于表面活性剂驱油后的油水分离。驱油实验结果显示,质量分数为0.3%的HW表面活性剂溶液可提高采收率10.5%  相似文献   

6.
为改善克拉玛依油田的微生物强化原油开采,从克拉玛依油田废水中筛选出一株性能优良的生物表面活性剂生产菌株BC1。根据菌株BC1 的理化指标和16S rDNA对其进行了属种信息鉴定,通过薄层层析(TLC)、傅里叶红外色谱(FT-IR)及高效液相色谱/质谱(HPLC-MS)对其产生物表面活性剂进行了分析,通过单因素摇瓶实验考察了发酵条件对菌株BC1 发酵合成生物表面活性剂的影响,研究了生物表面活性剂的性能。研究结果表明,菌株BC1 为铜绿假单胞菌属(Pseudomonas aeruginosa),其产生物表面活性剂主要成分为单鼠李糖脂RhC10C10;在温度37℃、初始pH为8、初始葡萄糖浓度5 g/L 的条件下持续发酵96 h 后,用酸沉降法测得鼠李糖脂产量为0.788 g/L;菌株BC1 产生物表面活性剂能将发酵液表面张力从72 降至28.6 mN/m,对车用机油的乳化指数E24 高达93%。人工油砂剥油实验中,发酵液、发酵离心上清液和鼠李糖脂粗品溶液对人工油砂的剥油率均达到74%以上。菌株P.aeruginosa BC1 产生物表面活性剂在微生物强化采油等方面具有良好的应用潜能。图7 表3参21  相似文献   

7.
吴志伟 《油田化学》2017,34(1):119-125
为明确表面活性剂的乳化性能和界面活性对水驱后残余油或剩余油影响的主次关系,结合冀东油田渗透率低、窜流严重、化学驱条件适宜等油藏特点,筛选出乳化性能强、界面活性较差和乳化性能较差、界面活性较强的表面活性剂体系,在渗透率相近的岩心中开展了水驱后驱油实验。结果表明:适和冀东油田高63-10断块两种表面活性剂复配体系为:乳化水率较好、界面张力达10~(-2)mN/m的体系0.2%非离子表面活性剂6501+0.1%阴离子表面活性剂XPS和乳化水率较差、界面张力达到10~(-3)mN/m的体系0.1%XPS+0.5%NaCl;水驱后注0.1%XPS+0.5%NaCl体系的采收率增幅为2.73%,注0.2%6501+0.1%XPS体系的采收率增幅为5.78%,乳化携带和聚并对残余油滴和局部剩余油驱替效果远好于界面活性的作用;综合发挥界面张力(10~(-2)mN/m)和乳化的作用能降低对界面活性的要求,这为表面活性剂筛选提供了实验依据和技术思路。  相似文献   

8.
以精细合成辛基酚为原料制得磺基甜菜碱型表面活性剂;利用表面张力仪对其性能进行测试,得出该表面活性剂具有较低的界面张力(10~(-3)mN/m)、良好的表面性能(临界胶束浓度为1.58×10~(-3)mol/L,临界表面张力为28.39 mN/m),以及优异的乳化性能和吸附性能。这对于油田现场提高采收率具有一定的指导应用。  相似文献   

9.
《精细石油化工》2014,(4):40-44
针对室内合成的一种超低界面张力表面活性剂(VESBET-4),结合表面活性剂驱的驱油机理讨论了表面活性剂浓度、矿化度、温度及碱(Na2CO3)浓度对油水界面张力的影响,结果表明:当表面活性剂质量分数在0.06%~0.15%时,界面张力可达到10-3 mN/m;矿化度为10 000mg/L时,界面张力可达到10-2 mN/m,且当Na2CO3质量分数在0.2%~1.2%时,该表面活性剂具有良好的降低界面张力的能力;测试了不同表面活性剂浓度、不同矿化度条件下表面活性剂溶液对原油的乳化效果,结果表明:当表面活性剂质量分数为0.09%、矿化度为6 000mg/L时,乳状液可稳定存在24h以上;静态吸附实验测得该表面活性剂的吸附损失量为0.45mg/g,小于标准规定的1mg/g;室内驱油试验显示该表面活性剂能使采收率提高12%以上。  相似文献   

10.
开发了一种低成本的阴/非离子复配型表面活性剂GBSG-1,并评价了该表面活性剂体系的性能。结果表明:在80℃、矿化度50000 mg/L、二价离子(Ca2+、Mg2+)含量2000 mg/L的情况下,油水间的界面张力可达10-3mN/m数量级。同时该表面活性剂体系具有较好的乳化能力,按体积比6:4将浓度为3 g/L的CBSG-1溶液与王瑶原油混合均匀后在80℃恒温静置12 h后的油水体积比为8:2。该体系具较强的抗吸附性,浓度为3 g/LCBSG-1溶液在岩心上的吸附量最大,为0.35 mg/g砂,吸附7 d后,油水界面张力仍可以保持在10-3mN/m超低数量级。驱替模拟实验说明:该表面活性剂驱油体系可在水驱基础上使渗透率95.2×10-3μm2的低渗透率岩心提高采收率12.7%。该体系可满足长庆油田部分高温、高矿化度及低渗透油藏对驱油用表面活性剂的要求。  相似文献   

11.
A Bacillus subtilis strain JA-1 isolated from an oil reservoir was studied.This strain is capable of growth and producing biosurfactant at a temperature of 60 oC.In nutrient medium it produced biosurfactant which reduced the surface tension from 68.2 mN/m to 28.3 mN/m,with the critical micelle concentration (CMC) of 48 mg/L.The measured surface tension indicated that the biosurfactant possessed stable surface activity at high temperature and a specific range of pH and salt concentrations.The results of thin layer chromatography (TLC) together with FT-IR showed that the metabolic product of strain JA-1 is a lipopeptide biosurfactant.The ability to growth at high temperature and to produce biosurfactant makes strain JA-1 promising for enhanced oil recovery.  相似文献   

12.
降解原油微生物的筛选及其部分特性的研究   总被引:9,自引:3,他引:6  
筛选得到4株可利用原油为碳源生长的菌株,初步鉴定为假单胞菌。这4株菌对原油有很好的降黏作用,它们能利用长链烷烃生长,并且能耐受一定的温度、压力和矿化度。其中的M-3菌除降黏外还能产生酸和生物表面活性剂,在以原油为碳源的培养基中进行培养时,可以使培养液的表面张力从72mN/m降至36mN/m,pH值从7.0降至约5.5。实验证明M-3菌液在室内条件下能提高原油采收率8.8%左右,在微生物采油中有很好的应用潜力。图1表4参19(李清心摘)  相似文献   

13.
为寻找可应用于三次采油的新型生物表面活性剂,以内酯型槐糖脂生物表面活性剂为驱油剂,系统评价了其临界胶束浓度、表面活性、界面活性、乳化性能及耐温耐盐能力,并通过室内物理模拟驱油实验研究了其驱油效率.结果表明:内酯型槐糖脂生物表面活性剂的临界胶束浓度为100 mg/L,具有良好的表面和界面活性及乳化性能,其乳化性能比石油磺酸盐稳定;具有较强的耐温耐盐能力,适用于高温高盐的油藏环境;内酯型槐糖脂表面活性剂的有效驱油质量浓度为10 mg/L,随着其质量浓度的增加,驱油效率成倍增加,当其质量浓度达到10 000 mg/L时,可提高采收率7.15%,具有良好的驱油性能.通过实验还发现石英砂对内酯型槐糖脂表面活性剂的吸附量较少,说明其是比较经济的生物表面活性剂.  相似文献   

14.
In this work, an experimental investigation on removing crude oil from a stainless steel tube using a biosurfactant such as emulsan was studied. The emulsan used in this study was produced by Acinetobacter calcoaceticus PTCC1318. The produced emulsan was able to reduce the surface and interfacial tension of water to 24 mN/m and 3 mN/m, respectively. Also influence of water- oil ratio on emulsifying property was studied. The results showed at CMC concentration, emulsification index (E24) of emulsions decreased with increasing water- oil ratio. At 25°C, 30 mg/L, with a water–oil ratio of 1:2, produced emulsan formed an excellent emulsification of crude oil about 98%. Cleaning parameters tested included washing time and flow rate. It also demonstrated that the emulsan is useful for the tube cleaning with removal percentages of 100% at the room temperature, depending on the washing conditions.  相似文献   

15.
In this study, the bacterium Bacillus licheniformis has been isolated from oil reservoir; the ability of this bacterium to produce a biosurfactant was detected. Surface properties of the produced biosurfactant were confirmed by determining the emulsification power as well as surface and interfacial tension. The crude biosurfactant has been extracted from supernatant culture growth, and the yield of crude biosurfactant was about 1 g/l. Also, chemical structure of the produced biosurfactant was confirmed using FTIR analysis. Results revealed that, the emulsification power has been increased up to 96% and the surface tension decreased from 72 of distilled water to 36 mN/m after 72 h of incubation. The potential application of this bacterial species in microbial-enhanced oil recovery (MEOR) was investigated. The percent of oil recovery was 16.6% upon application in a sand pack column designed to stimulate an oil recovery. It also showed antimicrobial activity against the growth of different strains of SRB (sulfate reducing bacteria). Results revealed that a complete inhibition of SRB growth using 1.0% crude biosurfactant is achieved after 3 h.  相似文献   

16.
小井距生物表面活性剂三元复合驱矿场试验   总被引:5,自引:2,他引:3  
小井距生物表面活性剂三元复合驱先导性矿场试验表明,将生物表面活性剂与磺酸盐类表面活性剂复配所形成的生物表面活性剂三元复合体系与未加入生物表面活性剂的三元复合体系相比,不仅左侧酸盐类表面活性剂的用量减少1/2,注入化学剂的成本降低了30%以上,而且体系与原油间仍能达到10^-3dmN/m超低界面张力值,取得中心井区提高采收率23.24%,全区提高采收率16.64%的好效果。  相似文献   

17.
Sixteen bacterial strains were isolated from petroleum hydrocarbons contaminated soils and screened for biosurfactants/bioemulsifiers production in liquid culture containing crude oil under thermophilic conditions. The bacterial strains grew in wide range of temperature, from 37 °C to 100 °C. Six of them were Gram positive. Their biosurfactant-production was evaluated at 45 °C.Blood agar lysis, drop-collapse method, oil spreading and stalagmometric techniques and surface tension (ST) measurements were used to detect biosurfactant production. Emulsification activity for culture broth was also tested using xylene, toluene, petroleum and diesel oils.All isolates reduced surface tension at varying degrees with strains: T/1 resulting in the highest reduction (35 mN/m). The drop-collapse, oil spreading and stalagmometric and reduction techniques all seem to give clear indicative results for biosurfactant production while blood hemolytic activity did not. The use of both the drop-collapse and oil spreading techniques were easy and quick to screen for biosurfactant producers but were not always conclusive.Although surface tension reduction was a good measure of biosurfactant production, it did not correlate well with emulsion ability. Several of our isolates had good emulsifying abilities with all hydrocarbon tested. The simplicity of the above techniques allows effective screening of biosurfactant-producing microorganisms. Although hemolytic activity have been reported as an initial selection criterion for biosurfactant producers, other more conclusive tests such as surface tension measurements should be carried out for confirmation of the obtained results.  相似文献   

18.
Biosurfactants are generally microbial metabolites with the typical amphiphilic structure of a surfactant. This study investigated potential biosurfactants production of Pseudomonas aeruginosa ATCC-10145 and Bacillus subtilis NCTC-1040 using glucose and n-hexadecane as substrates separately and compared it with the production in conventional medium. Pseudomonas aeruginosa growing in BHMS (Bushnell hass mineral salt) medium with glucose as substrate decreased the surface tension from 72 of distilled water to 32 mN/m, this strain had higher reduction than Bacillus subtilis among all the substrates tested. The selection of Pseudomonas aeruginosa for the separation of biosurfactant was determined. The crude biosurfactant was extracted from the supernatant and the yield of the crude biosurfactant was about 1 g/l. Some surface properties of rhamnolipids biosurfactant were evaluated. It also showed antimicrobial activity against different bacteria and fungi strains. The crude biosurfactant showed good action as antimicrobial activity against different bacterial and fungal species.  相似文献   

19.
Microbial enhanced oil recovery (MEOR) is a useful technique to improve oil recovery from depleted oil reservoirs beyond primary and secondary recovery operations using bacteria and their metabolites. In the present study, the biosurfactant production potential of Bacillus licheniformis microorganisms that were isolated from oil samples of Zilaei reservoir in the southwest of Iran was explored under extreme conditions. Growth media with different temperatures of 40, 50, 60, and 70°C; salinities of 1, 3, 5, and 7 wt%; and yeast extract concentrations of 0.5, 1, 1.5, and 2 g/L were used to find the optimum growth conditions. The results demonstrated that bacteria grown in a mineral salt solution with temperature of 50°C, salinity of 1 wt% and yeast extract concentration of 1 g/L has the highest growth rate and therefore, these conditions are the optimum conditions for growing the introduced bacterium. This isolate was selected as the higher biosurfactant producer. The obtained biosurfactants by bacteria isolated in a medium with these conditions could reduce the interfacial tension of crude oil/water system from 36.8 to 0.93 mN/m and surface tension of water from 72 to 23.8 mN/m. The results of the core flooding tests showed that the tertiary oil recovery efficiency due to the injection of microorganisms was 13.7% of original oil in place and bacteria could reduce the oil viscosity by 41.242% at optimum conditions. Based on these results, the isolated microorganism is a promising candidate for the development of microbial oil recovery processes.  相似文献   

20.
In this study, the biodegrading ability of three spices of Bacillus isolated from a soil, which was contaminated by crude oil, was studied. Isolated species are able to biodegrade crude oil carbohydrates by producing biosurfactants and lowering the rate of surface tension at different temperatures and pHs. The decrease of surface tension from 57 mN/m to 31 mN/m at 37°C and to 32.5 mN/m at 20°C by Bacillus cereus B1 in samples with 1% crude oil can be referred to as the results of this research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号