首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实验制备了单金属Ni、Fe及双金属Ni-Fe合金纳米晶催化剂,并以水合肼(N_2H_4·H_2O)为供氢剂,对旅大32-2脱水原油进行催化裂解加氢改质研究。采用TEM,XRD对所制备的催化剂进行表征;通过正交实验确定了最佳反应条件,并采用GC-MS,FTIR,TG-DSC等测试手段对原油及改质油样进行分析。表征结果显示,金属纳米晶催化剂平均粒径约为5.0~6.0 nm,且分布均匀。实验结果表明,金属纳米晶具有催化稠油大分子裂解并使供氢剂分解析氢双重功能,其中Ni-Fe合金/N_2H_4·H_2O体系共催化作用对稠油的降黏效果最佳,改质后油样中轻质组分含量为89.20%(w),上升了26.86百分点,黏度降至72 mPa·s,降黏率达95.6%;稠油经催化裂解加氢后重质组分结构被破坏,黏度发生不可逆的降低,稠油品质提高。  相似文献   

2.
为了更好地提高稠油油藏开发效果,采取化学生热与催化裂解方式来降低稠油黏度、提高地下稠油的流动能力非常必要。选择NaNO2和NH4Cl溶液作为化学生热剂,通过正交实验优选出生热剂最佳反应条件为:4 mol/L NaNO2,4mol/L NH4Cl,体系pH值为2。该条件下,反应温度和压力在短时间内迅速上升,分别达到峰值204℃和13.6 MPa,达到峰值的时间为6 min,反应基液温度升高149℃。油酸镍催化降黏体系最佳配方为:以反应原油的质量为基准,羧酸盐型油酸镍催化剂0.3%,供氢剂甲酸7%,助剂尿素7%,乳化剂十二烷基苯磺酸钠0.13%。该催化体系的最佳反应温度为280℃。油酸镍催化后,原油黏度由213.8 mPa·s降至74.2 mPa·s,降黏率为65.3%。当化学生热剂与催化裂解剂共同作用时,降黏率可达66.5%,饱和烃和芳烃含量增加,胶质和沥青质含量减小,催化降解效果较好。  相似文献   

3.
以风城超稠油为研究对象,采用自制活性大分子降黏剂制备了风城超稠油O/W降黏体系,以超稠油O/W降黏体系的初始表观黏度为主要评价手段,系统考察了降黏剂用量、含水量、初始搅拌转速对风城超稠油O/W降黏体系初始表观黏度的影响。室内实验结果表明:活性大分子降黏剂对风城超稠油具有良好的初始降黏效果,在活性大分子降黏剂用量0.1%~0.2%、油水质量比10∶3~10∶4、初始搅拌转速不小于400r/min条件下,得到的风城超稠油O/W降黏体系初始表观黏度小于600mPa.s,降黏效果显著。  相似文献   

4.
稠油的甲酸供氢催化水热裂解改质实验研究   总被引:6,自引:0,他引:6  
在0.3升高温高压反应釜中,以甲酸为供氢体、以油溶性有机镍盐为催化剂,研究了辽河稠油的水热裂解反应,考察了水热裂解前后稠油的黏度、族组成及硫含量变化.所用催化剂为绿色黏稠液体,nD(25℃)=1.4737,由环烷酸和硫酸镍制成,介绍了制备方法.所用稠油黏度的温敏性强,50℃、44.11/s黏度为3716 mPa·s.水热裂解反应条件如下:油水质量比4∶1,催化剂加量以稠油质量计为0.1%,反应温度280℃,时间24 h,初始充氮压力8.1MPa.催化水热裂解的降黏率为64.69%,使饱和烃、芳香烃由24.32%、36.89%增至26.12%、38.08%,使胶质、沥青质及硫含量由30.27%、8.52%及0.5650%减至28.27%、7.53%及0.3365%;加入1%~7%甲酸使降黏率增至69.16%~87.02%,使饱和烃、芳香烃增至27.73%~31.12%、39.68%~41.26%,使胶质、沥青质及硫含量减至26.29%~24.12%、6.66%~3.50%及0.3095%~0.0742%.红外光谱分析结果表明,稠油组分在供氢催化水热裂解中发生了脱羧反应且芳环数减少.讨论了甲酸作为供氢体在稠油催化水热裂解中的作用及其机理.图4表2参8.  相似文献   

5.
任亚青  吴本芳 《油田化学》2020,37(2):318-324
针对超稠油黏度高、流动性差和地层水矿化度高等现状,以表面活性剂、碱、有机磷酸为原料制得乳化降黏剂,对降黏剂配方进行了优选,研究了矿化度和温度对降黏剂降黏性能的影响,并分析了降黏机理。结果表明,超稠油乳化降黏剂最优配方为:质量比为1∶1的磺酸盐类阴离子表面活性剂YBH与醇醚羧酸盐类的阴、非离子表面活性剂YFBH复配的主剂、碱助剂、耐盐助剂NYZJ-1的质量比为1.1∶0.45∶1.15。在主剂、助剂总加剂量为0.81%(占原油乳状液的质量分数)、乳化温度80℃、油水质量比为7∶3、矿化度为95 g/L的条件下,可使超稠油黏度由316.5 Pa·s(50℃)降至其乳状液的0.0831 Pa·s,降黏率达99.97%,50℃下静置4 h的出水率为5.93%。温度对乳化降黏剂降黏性能的影响较小,经200℃处理2 h后超稠油乳状液的降黏率不变。复配乳化剂各组分间发挥了协同增效作用,增强了体系的降黏性能,提高了乳状液的稳定性。乳化降黏剂降黏效果良好,耐温抗盐,适用于高温高盐油藏。图10表3参15。  相似文献   

6.
针对风城超稠油在蒸汽吞吐生产中后期低温条件下开采效果较差的现状,引入了活性大分子降黏剂辅助蒸汽吞吐开采技术。以风城超稠油胶质、沥青质含量等主要物化性能为依据,设计制备了具有强亲油弱亲水特征的活性大分子降黏剂。模拟蒸汽吞吐工艺,室内评价显示降黏剂用量0.2%、油水质量比10∶3 时,所形成O/W 降黏体系初始表观黏度小于300mPa·s,降黏体系静态稳定,降黏剂耐温高达300 ℃,与正相破乳剂TA1031 配伍。现场试验显示开采温度低于60 ℃时,试验轮产油量比上一轮产量增加40.38 t,是上一轮产油量的2.27 倍。研究结果表明活性大分子降黏剂可大幅降低风城超稠油表观黏度,特别是改善超稠油在低温条件下的流动性,有效延长蒸汽吞吐的低温开采时间,提升周期产油量,应用前景广阔。  相似文献   

7.
针对蒸汽吞吐、蒸汽驱的低渗透区超稠油流动阻力大、开采困难等问题,提出低渗透区超稠油原位催化改质降黏技术。采用反应釜法和物模实验法,筛选高效原位改质催化剂,研究催化剂的注入方式,并筛选5种催化剂及其改质条件。研究表明:以有机锌为催化剂,催化剂用量为0.1%、稠油含水率为50%时,超稠油具有较好的改质降黏效果;物模实验法原位催化改质降黏效果优于反应釜法,稠油含水率为50%、催化剂用量为0.1%、反应温度为240 ℃、填砂管回压为8~10 MPa和反应时间为24 h条件下,稠油黏度由145 000 mPa·s降至54 260 mPa·s,降黏率达62.58%;物模实验法改质油的密度和酸值下降,重组分(胶质和沥青质)含量减少10.85%,300、500 ℃前馏分分别提高了6.75%、17.29%。在240 ℃、10 MPa条件下,采用自制生物质基调剖剂封堵优势渗流通道,将催化剂注入低渗填砂管后水驱,改质稠油黏度降至68 450 mPa·s,降黏率达52.79%,流动阻力减少19.74%,采出率达到95.22%,稠油综合采出率由46.94%增至85.13%。该方法为超稠油蒸汽吞吐、蒸汽驱低渗透区域的稠油进行原位催化改质降黏提高采收率提供了借鉴。  相似文献   

8.
催化裂解加氢技术在高温条件下使稠油大分子催化裂解,并通过加氢提高产物的氢/碳比,从而降低稠油黏度,提高产物轻质化程度。采用液相还原法制备了Ni、Pd及Ni-Pd合金纳米晶催化剂,并采用水合肼(N2H4·H2O)作为供氢剂,对南堡油田稠油进行催化裂解加氢降黏研究。利用永磁旋转搅拌高压釜模拟地层条件,通过正交实验确定了最佳反应条件并利用HSC Chemistry软件分析了供氢剂的热力学性质,在最佳反应条件下进行对比实验。结果表明:金属纳米晶可促进稠油大分子裂解并使供氢剂分解释氢,其中钯纳米晶/水合肼体系对稠油的降黏效果最好。与原油样品相比,改质后油样重质组分质量分数减少8.34百分点,降黏率达到91.3%。根据文献对稠油黏度降低的可能机理进行了简要分析。改质后的稠油黏度显著降低,可为稠油有效开采提高采收率提供理论参考。  相似文献   

9.
针对塔河油田稠油物性特征进行的试验表明,稠油区块在集输温度小于100℃的情况下,大部分油井原油流动性差,基本不具流动性。分别进行了超稠油掺轻油降黏试验、掺稀油降黏试验及化学降黏试验。对超稠油(90℃时黏度5×104mPa.s以下)掺入轻油,在稠油∶轻油=1∶0.33的比例情况下,降黏效果非常明显,原油70℃时黏度由52×104mPa.s降低到3 374 mPa.s,对后续脱水非常有利;目前所筛选的化学降黏药剂,对该区黏度较小的超稠油具有较好的分散性,能够起到一定的降黏作用;对于黏度更大的原油,需要掺入一定比例的稀油,才能使黏度降低到5×104mPa.s(50℃)以下,达到较好的乳化降黏效果。  相似文献   

10.
针对河南油田稠油特点,确定了氧化催化降黏剂最佳配方:氧化剂PY加量1.0%,催化剂CX -2加量2.0%,质子供体PN加量1.0%.将其添加至原油中,在温度100℃下反应16 h后,加碱中和,最佳碱加量为0.3%~1.5%,降黏后原油黏度≤500 mPa·s,降黏率可达98%以上.  相似文献   

11.
<正>为实现通过向油层加入适当的催化剂,提高稠油、超稠油在热采条件下的水热裂解反应程度,不可逆地降低稠油、超稠油的黏度,提高热采效果和效益,胜利油田利用纳米技术研制出具有自主知识产权的纳米催化降黏体系。在含水率不低于10%的超稠油和特稠油中加入0.5%纳米催化降黏体系,在180℃温度下,24h后超稠油的降黏率达到90.36%,特稠油的降黏率达到85.16%。  相似文献   

12.
为了解决胜利油田陈家庄稠油黏度大、开采难的问题,考察了阴离子烯烃类磺酸盐乳化降黏剂SS、阴离子烷烃类磺酸盐乳化降黏剂SD、非离子乳化降黏剂SF以及SS+SF(质量比1∶1)和SD+SF(质量比1∶1)复配体系降低油水界面张力的能力和乳化稠油的能力,并采用SS、SF、SS+SF溶液进行了微观可视化驱油实验。研究结果表明,在质量分数0.4%,温度25℃下,SD、SS阴离子乳化降黏剂体系与模拟油的界面张力分别为1.87×10-2mN/m和1.21×10-2mN/m,与稠油模拟油(黏度187 m Pa·s)形成乳状液(质量比3∶7)的黏度分别为42 mPa·s和46 mPa·s;在微观驱油过程中,阴离子乳化降黏剂SD、SS的提高采收率分别为56.75%、61.93%。同样条件下,SS+SF体系具有优于单组分乳化降黏剂的界面活性和提高采收率能力,界面张力降至1×10-4mN/m以下,与稠油模拟油形成的乳状液黏度为30 mPa·s,相对于SF乳化降黏剂提高采收率14.93%。SS+SF乳化降黏剂有望用作普通稠油油田的驱油处理剂。  相似文献   

13.
为了更好地应用水热催化裂解技术对稠油进行开采,明确稠油性质变化的本质,对胜利油田超稠油进行微乳液纳米镍催化降黏剂水热催化裂解实验研究。实验结果表明,水热催化裂解反应后,稠油黏度大幅度降低,稠油中胶质、沥青质的含量下降,硫含量大幅降低,氮含量略减少。稠油氢碳原子比增加,平均分子质量减小。族组分中沥青质的平均分子质量减小幅度最大,说明沥青质裂解对稠油黏度的降低和平均分子质量的减小起到了关键作用。该研究为日后稠油水热催化裂解降黏技术的推广提供了技术参考。  相似文献   

14.
超稠油乳化降粘剂SHVR-02的研制   总被引:3,自引:1,他引:2  
用荧光法测得辽河油田杜84块杜54 30井超稠油(室温粘度54.8Pa·s)乳化剂的最佳HLB值为10.8。根据这一HLB值,由主剂脂肪醇聚氧乙烯醚、一种生物表面活性剂及辅剂快速渗透剂JFC配成了超稠油乳化降粘剂SHVR 02。当油水体积比为1.0∶0.7、水相中SHVR 02浓度为1g/L时,超稠油乳状液的粘度为492mPa·s,水相浓度增大至5g/L时乳状液粘度降至268mPa·s。在油水体积比1.0∶0.7、水相SHVR 02浓度3g/L、混合温度50℃条件下,粘度在6.2~20.9Pa·s的8种辽河稠油形成的乳状液,粘度在53~148mPa·s之间。乳状液在40~80℃放置10h后,粘度随放置温度升高略有下降(378→248mPa·s),放置温度为90℃时乳状液发生反相,粘度升至26.1Pa·s。SHVR 02的乳化降粘效果优于3种对比乳化剂。SHVR 02形成的超稠油乳状液易破乳,与联合站现用破乳剂配伍。表6参14。  相似文献   

15.
针对河南油田超稠油黏度高,流动性差,开采和输送困难等现状,本文展开对河南油田超稠油的乳化降黏研究。得到优化的复合降黏剂F2配方,其中,乳化降黏剂主剂RA-1、稳定剂聚丙烯酰胺、助剂碱质量比为1:0.25:0.36,在F2总加剂量为0.483%(占原油乳状液的质量百分率),乳化温度70℃,油水质量比为7:3下,可以制得均匀、稳定的O/W型超稠油乳状液,超稠油的黏度由240 Pa·s(50℃)降到其乳状液的42.8 mPa·s(50℃),降黏率高达99.98%。文中同时对降黏机理进行了探讨。  相似文献   

16.
低硫超稠油水热裂解反应的研究   总被引:1,自引:0,他引:1  
研究了反应温度、反应时间、加水量对辽河曙一区超稠油水热裂解反应的影响。结果表明,随反应温度、反应时间和添加物料中水油比的增加,水热裂解反应后油样的饱和份、芳香份的含量逐渐增大,沥青质、胶质含量逐渐减小;在反应温度为240℃、反应时间24小时、添加的水油质量比为0.5时,超稠油水热裂解反应基本完成,50℃粘度由超稠油原样的147.5Pa·s降低到115.4Pa·s,平均相对分子量由超稠油原样的674降低到550。由此可知,含硫量仅为0.45m%的辽河曙一区超稠油能够通过水热裂解反应降低其粘度,实现降粘开采。  相似文献   

17.
《石油化工》2016,45(1):97
以新疆油田九_7区超稠油为研究目标,采用自制的活性大分子降黏剂,结合超声波辅助混合技术,制备了超稠油降黏体系,考察了降黏剂用量、油水比及超声波作用对降黏效果的影响,研究了超稠油降黏体系的稳定性。实验结果表明,活性大分子降黏剂对九_7区超稠油具有良好的降黏效果,在降黏剂用量为0.4%(w)、m(油)∶m(水)=10∶3、超声波辅助掺混30 s时制备的超稠油降黏体系初始表观黏度小于300 m Pa·s;超声波作用使超稠油与降黏剂水溶液混合效率提高了50%以上,降黏剂用量降低25%(w)左右。在模拟现场工况条件下,制备的超稠油降黏体系动、静态稳定性良好,能满足短距离集输的实际要求。  相似文献   

18.
为更好地实现稠油就地水热裂解降黏,以油藏矿物、催化剂和供氢剂为催化体系,检测其对大庆外围稠油水热裂解反应的催化作用.实验结果表明,油藏矿物可以催化稠油水热裂解反应,并可与催化剂协同催化稠油水热裂解,矿物与油溶性催化剂的协同催化效果好于水溶性催化剂;供氢剂的加入可进一步强化稠油水热裂解反应,与不添加供氢剂相比,反应后胶质...  相似文献   

19.
以自制的油溶性有机镍盐作为催化剂进行稠油水热裂解反应.考察了催化剂加量、反应温度、反应时间和加水量对催化水热裂解反应前后稠油黏度、族组成的影响.催化水热裂解反应的最佳条件为:反应温度240℃,反应时问24 h,加水量30%,催化剂质量分数0.1%.对反应前后稠油的元素分析结果表明,与水热裂解反应相比,加入催化剂后的稠油黏度由11000 mPa·s降至3414 mPa·s,沥青质、胶质含量分别降低1.7%、1.6%,芳香分、饱和分含量分别增加0.8%、2.5%,稠油中C含量降低,H含量增加,H、C原子数比提高,而杂原子与C的原子数比降低.图4表6参8  相似文献   

20.
耐高温钻井液降黏剂St/AMPS/AA的研制   总被引:1,自引:0,他引:1  
以苯乙烯与2-丙烯酰胺基-2-甲基丙磺酸和丙烯酸为原料,DMF(N,N-二甲基甲酰胺)为溶剂,引发剂BPO(过氧化苯甲酰)用量为1.0%,溶液共聚温度为85℃,反应时间为4 h,合成了St/AMPS/AA共聚物钻井液降黏剂。室内实验表明,加入0.5%该共聚物后,淡水钻井液在常温下的表观黏度由28.8 mPa.s降至23.4mPa.s,降黏率为58.3%;在260℃老化16 h后表观黏度由37.1 mPa.s降至6.8 mPa.s,降黏率为76.8%,该剂用作抗高温降黏剂在淡水钻井液中具有良好的耐温性和降黏效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号