首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为揭示页岩微纳米孔隙中气体的扩散机理,针对页岩储层气体扩散能力难以定量表征的问题,基于考虑流体黏性的微分形式动量方程,建立了考虑页岩孔隙度、迂曲度和流动K_(n)数(气体分子平均自由程与流动特征尺度之比,无量纲)的气体扩散系数新模型,将模型与自主研发的页岩近平衡态实验进行验证,进而形成了页岩气扩散系数影响因素图版。研究表明:考虑了页岩孔隙度、迂曲度等多孔介质参数和流动K_(n)数,新建立的扩散系数更能准确表征页岩气扩散能力,与近平衡扩散流量吻合度达90%以上。扩散系数与压力负相关而与孔隙直径正相关,在压力低于20MPa、孔隙直径低于10nm或K_(n)数高于0.2后必须考虑上述参数变化对扩散系数的影响。该研究实现了储层条件下页岩气扩散流量的定量计算,可用于页岩表观渗透率模型的建立,为不同生产阶段页岩气扩散对产量的贡献以及调整生产制度、提高单井产量提供科学依据。  相似文献   

2.
在地层条件下,页岩气流动状态受多尺度效应影响,包含黏性流、扩散流以及滑脱流等,气体的产出是多种机制协同作用的结果,前人提出的扩散模型已不能准确地描述页岩气在基质中的扩散行为。为了定量表征页岩气扩散能力的影响因素,揭示气井在全生命周期开发过程中的流动规律以及对产能的影响,利用自主研发的高温高压近平衡态实验系统,开展了页岩气在0~1 MPa微压差条件下的流动实验,并提出一种综合考虑渗透率、温度与压力的扩散系数计算方法,成功地运用于川南地区五峰组-龙马溪组页岩中,指出该地区优质储层扩散产量成为主控因素时临界开发压力为4.5 MPa,对于页岩气井产能评价以及扩散能力的表征有重要的意义。通过实验结果与理论分析表明,扩散在高温、低渗、低压力条件下会有更高的分配系数,考虑了基质渗流能力的扩散系数模型能更好地运用在实际流动中,忽略扩散的影响将对产能计算带来较大误差。  相似文献   

3.
页岩储层基质气体扩散能力评价新方法   总被引:9,自引:4,他引:5  
为了更好地评价页岩气在储层基质岩块中的流动能力,以便准确地预测页岩气水平井产量变化规律,以Fick第一定律为基础,依据物质平衡方程,建立了考虑在压差引起浓度差的作用下气体广义扩散能力评价模型,并提出了页岩气体扩散速率系数和扩散效率计算方法。在此基础上,设计了相应的页岩气体扩散能力评价实验装置和实验流程,通过在不同实验条件下的气体扩散实验,获得了随时间变化的气体累积扩散量,利用实验数据计算获得了页岩气体扩散系数、扩散速率系数、扩散效率及流动系数,进而对页岩扩散能力的影响因素进行分析。研究结果表明,页岩基质中的气体主要以广义扩散的方式为压裂裂缝中气体流动提供重要补充;页岩渗透率决定着页岩气体扩散能力大小,渗透率越大,扩散能力越强,而孔隙度与页岩扩散能力相关性小。  相似文献   

4.
根据多孔介质中气体分子的扩散形式,结合页岩气储层多尺度分布的结构特点,分析了页岩储集空间中页岩气的扩散机理,包括:有机干酪根中溶解气的扩散和纳米孔隙中游离气的扩散。其中纳米孔隙中游离气的扩散又根据克努森(Kn)数的不同分为Knudsen扩散、Fick扩散和过渡扩散。根据Fick第二定律,建立了干酪根中溶解气扩散模型,给出了纳米孔隙中3种扩散机理扩散系数的计算方法。分析了压缩性对气体平均自由程计算的影响,重点讨论了温度、压力、孔隙直径以及气体压缩性等对纳米孑L隙中扩散机理选择的影响。得出:不同扩散机理的选择对扩散能力的影响不可忽略,实际计算中必须根据Knudsen数,选取相应扩散机理对应的扩散系数。  相似文献   

5.
为研究页岩气在多尺度孔隙介质中的渗流率表征,以及分析各种流动状态对渗透率的贡献。基于页岩储层孔径分布特征,利用Kundsen数对流动状态进行划分,建立气体分子在多孔介质中的渗透率理论计算模型,分析了孔隙流体压力与渗透率的关系以及不同流动状态对渗透率的贡献。模型研究表明:多孔介质渗透率受气体达西流、滑脱流、Fick扩散流、过渡扩散流及Kundsen扩散流的影响;气体流动状态受流体压力和孔径分布决定,流体压力降低导致气体在多孔介质中的流动状态发生改变;随着储层流体压力降低,过渡扩散流对渗透率贡献增加,页岩储层渗透率增大。储层流体压力低于1 MPa时,Kundsen扩散流对渗透率贡献逐渐增大,渗透率迅速增加。  相似文献   

6.
针对采用常规渗透率无法有效表征页岩储层流动能力的现状,运用自主研发的页岩气稳态流动和衰竭开发物理模拟实验装置,测试了压力为0. 0~30. 0 MPa的气体流动能力,结合孔隙分布和应力敏感测试,建立了页岩储层基质气体流动能力的表征方法。研究表明:页岩储层中气体流态以滑脱流为主,明确了滑脱因子、吸附以及应力敏感对流动能力的影响,建立了氦气渗透率、氮气渗透率与甲烷渗透率三者之间的转换关系;建立了考虑滑脱、吸附和应力敏感的表观渗透率模型,能表征页岩气在基质中的流动能力。建立的表观渗透率模型更接近原始储层气体的真实流动状态,能反应页岩气开发过程中储层的实际渗流能力,从而为页岩产气规律评价和生产动态预测提供科学依据。  相似文献   

7.
为了表征页岩基质表观渗透率,研究其动态变化规律,基于迂曲毛细管束分形理论及气体微观渗流机理,分别建立考虑吸附、滑脱、扩散及渗流的无机质和有机质表观渗透率模型,并通过面积系数加权得到页岩基质表观渗透率模型。结合实验数据及已有模型验证了新建模型的可靠性,定量分析了页岩基质微观孔隙结构(孔径、孔隙度、分形维数),外界环境(压力、含水饱和度、有效直径修正因子)及气体性质对页岩基质表观渗透率的影响。研究结果表明:随着储层压力的降低,无机质孔隙水膜厚度增大,有效直径减小,迂曲度分形维数增大,孔隙分形维数减小,气体滑脱效应增强,但仍以吸附影响为主,无机质表观渗透率总体呈下降趋势;有机质孔隙吸附气解吸使有效直径修正因子逐渐增大,迂曲度分形维数减小,孔隙分形维数增大,滑脱效应及努森扩散在低压小孔中增强,有机质表观渗透率总体呈上升趋势;有机质与无机质表观物性参数随压力、吸附层变化规律不同,渗透率差值较大,因此在页岩基质表观渗透率研究时应予以区分计算,避免其差异性所带来的误差。  相似文献   

8.
页岩气衰竭式开采过程中储层有效应力逐渐增大,且气体产出是跨越解吸、扩散和渗流的多尺度传质行为,其中扩散是沟通解吸和渗流的桥梁,但以往研究尚未对气体扩散能力的有效应力响应特征给予足够重视。为此,选用四川盆地南部地区(以下简称川南地区)志留系龙马溪组页岩样品,设计并开展了不同有效应力下的压力衰减实验,揭示有效应力变化对气体扩散能力的响应机制,提出页岩基块应力敏感指数(ISSGD),以定量表征基于气体扩散能力的页岩基块应力敏感性。研究结果表明:(1)气体扩散量随有效应力增加而降低,且变化前期快、后期慢;(2)随有效应力增加,大于50 nm孔缝气体扩散时间缩短;(3)基块岩样ISSGD为25.68%,应力敏感程度为中等偏弱,而裂缝岩样则表现出更强的应力敏感性。结论认为,随着有效应力增加,页岩基质孔隙中扩散系数降低,但微裂缝中原先以黏性流、滑脱流为主的流动通道被压缩,气体流动方式逐渐以扩散为主,气体扩散系数增大,但总体输运能力仍明显降低,因此推荐川南地区页岩储层有效应力维持在17~30 MPa,有助于基块向裂缝稳定供气。  相似文献   

9.
页岩储层渗透率数学表征   总被引:6,自引:0,他引:6  
为研究页岩储层渗透率表征方法中存在的问题,根据页岩储层独特的裂缝、孔隙分布特点,分别建立了裂缝渗透率理论计算模型和基质渗透率理论计算模型,定性分析了缝宽、孔隙直径、孔隙压力等参数对渗透率的影响。模型研究表明:裂缝内气体渗流满足立方定律,其渗流能力由缝宽决定;基质渗透率受气体滑脱效应和扩散效应影响,其渗流能力由孔隙压力和孔隙直径共同决定,且随孔隙压力和孔隙直径的变化发生动态变化;裂缝渗透率和基质渗透率极差较大,实际应用时须进行适当分类处理,以克服采用现有渗透率数学表征方法表征页岩气渗透率的不足。应用实例结果表明,该方法准确有效。  相似文献   

10.
页岩气藏存在多尺度孔隙结构,流体运移方式多样,包括吸附、扩散和非达西渗流。目前页岩气多重运移流动模型仅考虑天然裂缝的渗透率和孔隙度为应力敏感系数,但实验表明扩散系数也具有应力敏感性。建立考虑多重应力敏感效应的压裂水平井试井分析模型,能准确分析和预测页岩储集层和流体参数,对页岩气藏生产动态分析和开发方案编制十分必要。基于页岩储集层多尺度孔隙结构,假设页岩气藏具有基质和裂缝系统的双重介质,考虑流体多重流动机理,建立以扩散系数、天然裂缝渗透率和孔隙度为应力敏感系数的压裂水平井试井分析模型,分析了压裂规模和页岩储集层特征参数对试井曲线的影响。结果表明,压裂规模参数主要影响气藏开采早期,页岩储集层特征参数主要影响气藏开采晚期。针对中国典型页岩气区进行分析,提出的试井分析方法能较好地拟合生产数据,可为页岩气藏高效开发提供一定借鉴。  相似文献   

11.
Due to the nanometer scale pore size and extremely low permeability of a shale matrix,traditional Darcy’s law can not exactly describe the combined gas transport mechanisms of viscous flow and Knudsen diffusion.Three transport models modified by the Darcy equation with apparent permeability are used to describe the combined gas transport mechanisms in ultra-tight porous media,the result shows that Knudsen diffusion has a great impact on the gas transport and Darcy’s law cannot be used in a shale matrix with a pore diameter less than 1 μm.A single porosity model and a double porosity model with consideration of the combined gas transport mechanisms are developed to evaluate the influence of gas transport mechanisms and fracture parameters respectively on shale gas production.The numerical results show that the gas production predicted by Darcy’s law is lower than that predicted with consideration of Knudsen diffusion and the tighter the shale matrix,the greater difference of the gas production estimates.In addition,the numerical simulation results indicate that shale fractures have a great impact on shale gas production.Shale gas cannot be produced economically without fractures.  相似文献   

12.
页岩气藏多重介质耦合流动模型   总被引:3,自引:0,他引:3  
为准确掌握页岩气流动规律以及精准评价水力压裂效果, 需要建立页岩气藏多重介质耦合流动模型。为此,基于页岩气 藏干酪根、无机基质及裂缝物性特征,综合考虑微纳米尺度气体黏性滑脱、努森扩散、吸附解吸、表面扩散等运移规律,通过表观 渗透率来综合表征页岩气藏多尺度介质渗流机理。在此基础上,考虑储层压裂改造特征及跨尺度流体传质机理,建立页岩气藏多重 介质耦合流动模型,应用Laplace 变换和Stehfest 数值反演,得到了定产和定压情况下封闭边界单裂缝井底无因次拟压力和产量半解 析解。在模型正确性验证的基础上,结合矿场参数对模型进行实例分析。结果表明:①干酪根是页岩气藏重要的烃源介质,干酪根 含量每增加10%,对页岩气累积产量的贡献度增加12% 左右;②无机基质滑脱效应及努森扩散在对生产中期气体流速产生较大影响 的同时也增大了孔隙压力衰竭速度。基于所建流动模型研究了页岩气藏分段压裂水平井流动规律,结果表明:不考虑井筒存储及表 皮效应时,储层有线性流、双线性流、“双窜流”、无机基质稳态流、拟边界流、“三线性”流、封闭边界流7 个流动阶段。  相似文献   

13.
页岩气开发已经成为当今世界各国的焦点,然而关于页岩气的理论研究还处于起步阶段。目前关于页岩气数值模拟方法的应用大多局限于常规油气藏数值模拟所采用的连续介质模型,但页岩气藏天然裂缝发育,非均质性强,连续介质模型不能准确表征页岩气特有的渗流特征。基于离散裂缝网络模型(DFN),从渗流理论出发,建立页岩气离散裂缝网络渗流数学模型,表征页岩气在干酪根中的扩散效应,孔壁的吸附—解吸附效应,纳米孔隙中的滑脱效应、Knudsen扩散效应以及裂缝内的非达西渗流规律。利用有限差分法求解渗流方程并进行敏感性分析。最终得出:①页岩气不同生产阶段,产气机理不同|②滑脱效应和Knudsen扩散效应对页岩气产能影响较大,而吸附—解吸附效应和干酪根中的扩散效应对延长页岩气稳产期起到关键作用。通过和现有页岩气数值模拟软件CMG(2012版)计算结果对比,该模型在模拟裂缝性页岩气藏时更符合实际情况,为页岩气数值模拟的研究奠定了基础。  相似文献   

14.
考虑表面扩散作用的页岩气瞬态流动模型   总被引:2,自引:0,他引:2  
针对甲烷气在页岩孔隙中的流动规律问题,建立了考虑孔内扩散、孔壁表面扩散、黏性滑脱流动和气体解吸附等多种流动机理的瞬态流动毛管束模型,并采用有限差分法的三层隐式差分格式离散控制方程对模型进行了数值求解。该模型考虑了“表面扩散”和吸附层对气体滑脱速度的影响,其预测产气量高于以往模型预测值。实例计算结果表明,孔壁表面扩散是页岩孔隙中不可忽略的传质方式,且表面扩散通量对总流动通量的贡献随孔径减小而增强,孔径小于5 nm孔隙中表面扩散通量占总流动通量百分比可超过50% ;黏性流动通量所占百分比随孔径增大而增加,孔径大于50 nm孔隙中黏性流动通量所占百分比接近100% ;孔内扩散通量相比于表面扩散通量和黏性流动通量可忽略不计。  相似文献   

15.
现有的页岩气表观渗透率计算模型均假设页岩气为理想状态,未考虑吸附气表面扩散等的影响,因而有可能与实际状态下的结果存在着差异。为此,针对实际状态下页岩气在纳米孔隙中的渗流情况,考虑了游离气的黏滞流、Knudsen扩散以及吸附气的表面扩散等影响因素,通过渗流力学方法,推导出了一种适用于实际状态的页岩气表观渗透率计算新模型;通过与实验测量结果的对比,验证了新模型的准确性,并利用所建模型分析了影响页岩气表观渗透率的各种因素。研究结果表明:(1)压力和孔隙半径对页岩气表观渗透率的影响最大,相对分子质量及阻塞系数对其的影响较小,Langmuir最大吸附量、Langmuir压力以及等量吸附热主要影响表面扩散渗透率比重;(2)在低压和高压条件下,各因素对表观渗透率及各渗透率比重的影响趋势存在着差异,低压下温度及孔隙半径对表观渗透率的影响更明显,同时温度、孔隙半径、Langmuir最大吸附量、Langmuir压力、等量吸附热等因素对各渗透率比重的影响也更明显;(3)压力较小、孔隙半径较小时,表面扩散占主要地位,压力较大、孔隙半径较大时,黏滞流占主要地位,小孔隙半径或低压条件下,表面扩散现象不可忽略。  相似文献   

16.
In order to investigate the influence on shale gas well productivity caused by gas transport in nanometersize pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A discrete- fracture model is used to simplify the fracture modeling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.  相似文献   

17.
页岩气纳米孔气体传输模型   总被引:10,自引:1,他引:9  
页岩气纳米孔气体传输模型是准确进行页岩气数值模拟的基础,对页岩气经济开发具有重要的意义。页岩气纳米孔气体传输机理包括纳米孔体相气体传输和吸附气表面扩散,而纳米孔体相气体传输机理包括连续流动、滑脱流动和努森扩散。基于滑脱流动和努森扩散两种传输机理,分别以分子之间碰撞频率和分子与孔隙壁面碰撞频率占总碰撞频率的比值作为滑脱流动和努森扩散的权重因子,将这两种传输机理叠加,建立了纳米孔体相气体传输模型。基于Hwang模型,考虑高压条件下吸附气覆盖度的影响,建立了纳米孔吸附气表面扩散模型。结合纳米孔体相气体传输和吸附气表面扩散模型,建立了页岩气纳米孔气体传输模型,并采用分子模拟和实验数据进行了验证。结果表明:①滑脱流动、努森扩散和表面扩散对气体传输的贡献是此消彼长的,其主要受孔隙尺度和压力的支配。②滑脱流动在介、宏孔(半径> 2 nm)和高压条件下,对气体传输贡献大;在微孔(半径≤2 nm)和低压条件下,其贡献小,可忽略。③努森扩散在宏孔(半径> 50 nm)和低压条件下,对气体传输贡献不可忽略,在其他条件下均可忽略。④表面扩散在微孔(半径≤2 nm)和全压力范围内,总是主宰了气体传输;当孔隙半径> 25 nm和压力高于1 MPa时,表面扩散贡献可忽略;当孔隙半径在2~25 nm和压力低于5 MPa时,表面扩散贡献较高,不能忽略。  相似文献   

18.
页岩纳米级孔隙气体流动特征   总被引:1,自引:0,他引:1  
页岩气在孔隙中的流动规律是评价页岩气产能的基础,而气体流动规律与页岩的孔隙大小密切相关。通过液氮等温吸附对昭通地区龙马溪组以及五峰组页岩的孔隙进行研究发现,该地区页岩孔隙大小主要分布在4~6 nm。利用Kn数和Beskok-Karniandakis方程计算了页岩的表观渗透率,分析了压力、温度以及吸附作用对气体流动规律的影响:在直径小于10 nm的孔隙中,气体表观渗透率与达西渗透率的比值高达30,气体的吸附会缩小页岩的孔径,吸附层的存在会使得孔径小于10 nm的孔隙表观渗透率与达西渗透率的比值增大。温度与压力都会影响Kn数,从而影响气体的表观渗透率和页岩吸附层厚度。在不考虑吸附层的影响下,压力升高,页岩表观渗透率下降,温度升高,表观渗透率稍有变化,变化不明显;考虑吸附层影响下,页岩表观渗透率与达西渗透率之比与不考虑吸附时表观渗透率与达西渗透率之比随压力降低或温度上升呈下降趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号