首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  国内免费   6篇
综合类   1篇
矿业工程   1篇
石油天然气   24篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   6篇
  2011年   4篇
  1980年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
气藏平均地层压力跟踪计算新方法   总被引:1,自引:0,他引:1  
平均地层压力是产能评价和动态分析的基础,准确、快速获取平均地层压力对高效开发气藏意义重大。基于地层压力随时间变化的规律,分析了平均地层压力的变化规律。研究结果表明:平均地层压力等效点仅随时间发生改变,平均地层压力的下降速率等于或者近似等于井底流压的下降速率。从封闭弹性驱动气藏的物质平衡方程出发,考虑偏差系数和井底流压随平均地层压力的变化,推导建立了平均地层压力跟踪计算新方法,根据生产数据可迭代计算平均地层压力。方法验证结果显示,采气速度和采出程度共同影响模型的计算结果。应用实例表明,跟踪计算法与压力恢复试井和物质平衡法之间的相对误差均较小,满足工程计算精度要求,且跟踪计算法不需依托生产测试数据,节约了测试费用,避免了测试占产。  相似文献   
2.
通过理论分析与数值模拟相结合,分析对比SIS水平井与常规水平井的开发效果,在此基础上从生产制度与井型设计两方面对SIS水平井进行优化设计。研究表明,渗透率在1~40 mD,含气量小于12 m3/m3时,SIS水平井的采出程度是常规水平井的2~7倍。因此对于含气量较低,渗透率中等,割理较发育的中煤阶煤层气藏,SIS水平井具有较大的优势。SIS水平井合理泵排量为60~90 m3/d,合理生产井井底流压应控制在0.15~0.2 MPa.同时SIS水平井分支长度在1 100 m左右,分支夹角在40°~50°,SIS水平井主轴方向与面割理垂直时,SIS水平井开发效果最佳。  相似文献   
3.
油水相对渗透率是描述储层多孔介质油水渗流的重要参数,高产的高孔高渗油藏在近井地带可能会发生单相或两相的非达西渗流,以致于在常规条件下得出的相渗曲线并不能准确地表达该类油藏的渗流特征,导致产能评价及预测不合理。通过考虑高孔高渗储层多孔介质的油水渗流特征,建立了考虑高速非达西效应的高孔高渗油藏非稳态油水相对渗透率计算模型,进行了非稳态油水相对渗透率实验,计算了不同油相或水相非达西系数对油水相对渗透率曲线的影响,最后数模分析了高速非达西效应对高孔高渗油藏的影响。研究表明,水相对油水相对渗透率曲线的影响较为显著,非达西效应的影响在油水相渗曲线的两端更为明显。两相高速非达西效应虽然降低了油藏的总体产液量,但是抑制了产水,增加了产油量,与单相高速非达西效应相比,两相高速非达西效应对油田生产并不一定具有负面作用。  相似文献   
4.
为了定量评价非平衡相变对油气系统脱气的影响和准确确定不同采油速度下油气系统的泡点压力,以亨利模型为基础,考虑挥发油非平衡相变,建立了考虑压降影响的气体溶解度计算模型。利用变压器油和二氧化碳组成的油气系统在不同压降速度下进行脱气实验,分别测量非平衡相变和平衡相变状态下的脱气速度,经计算、拟合得到表征油气系统非平衡性的重量函数,最后计算出不同压降速度时的脱气速度和泡点压力,并定量评价非平衡相变对脱气的影响程度及泡点压力偏离程度。考虑油气系统非平衡相变模型的计算精度高于未考虑非平衡相变的亨利模型,计算结果表明,挥发油藏开发过程中,油气非平衡相变降低了油藏泡点压力,延缓了挥发油脱气进程,压力降落速度和压力降落幅度决定非平衡相变对脱气的影响程度:压力降落幅度越大、压力降落速度越大,非平衡相变对脱气影响越明显,泡点压力越低、脱气速度越小。  相似文献   
5.
页岩气有机质纳米孔气体传输微尺度效应   总被引:1,自引:0,他引:1  
页岩气有机质孔隙多为纳米尺度且气体赋存方式多样,因此页岩气有机质纳米孔中的气体存在多种传输机理,而如何建立能描述高压条件下所有传输机理的纳米孔体相气体传输模型、如何描述页岩有机质纳米孔表面扩散,以及确定表面扩散对气体传输贡献究竟有多大等则是目前亟待解决的难题。为此,综合考虑体相气体传输、表面扩散、真实气体、吸附层和应力敏感等微尺度效应的影响,建立了页岩气有机质纳米孔气体传输模型。研究结果表明:①通过滑脱流动和努森扩散加权叠加建立的体相气体传输模型能合理描述体相气体传输;②表面扩散是重要的传输机理,尤其在尺度小的纳米孔中,主宰了气体传输;③页岩气应力敏感效应不同于常规油气藏,其不仅与有机质力学属性、有效应力等有关,而且还与气体传输机理有关。结论认为,所建模型能够从室内低压条件直接推广到页岩储集层高压条件,能为页岩气生产动态分析、产能预测和生产制度制订提供指导。  相似文献   
6.
中国致密砂岩气资源丰富,勘探潜力大,但已有的开发实践证实开发面临巨大挑战。为了从微观角度深入认识致密砂岩气成藏机理,气水分布,提高致密砂岩气采收率,基于孔隙网络模型,开展了致密砂岩气充注数值模拟研究,探讨了微观尺度下致密砂岩气充注机制,并分析了充注过程中气水的赋存特征,建立了不同温度压力条件下毛细管力学模型,指出了不同地质条件下含气性差异与变化的特征。研究结果表明:(1)毛细管压力是孔隙内流体与孔隙壁面之间的分子间相互作用力的宏观表达,相较常温常压,在高温高压地层中毛细管压力更小,成藏下限可能更低;(2)由于孔隙结构的非均质性特征,并非所有大孔隙都被天然气充注,与小孔隙或者窄喉道相连的大孔隙可能无法被充注而呈现局部高含水特征,开发过程中,这部分水作为自由水被产出;(3)孔隙网络模拟揭示了岩心尺度上的致密砂岩微观含气性增长机制与气水分布形成过程,有利于深入认识致密油气成藏机理,以及气水分布。结论认为,基于孔隙网络充注模拟技术,在实验室条件下揭示了微观气水分布形成过程和致密砂岩气充注机理,对指导致密砂岩气开发具有重要指导和借鉴意义。  相似文献   
7.
注气辅助重力泄油开发油藏采收率预测方法   总被引:1,自引:0,他引:1  
注气辅助重力泄油已成为油藏提高采收率的最新开发方式,可解决常规连续注气和水气交替注入体积波及系数低的主要问题,大幅度提高最终采收率,然而还未有相对应有效的采收率预测方法。通过对注气辅助重力泄油开发机理研究,利用量纲分析方法,对毛管数、邦德数及重力数进行分析,评价其对采收率影响的相对作用,然后通过考虑储层润湿性、油气密度差与粘度比,重新修正重力数和重力泄油数,利用实验及现场数据,确定其与采收率的关系,最后建立了注气辅助重力泄油开发油藏采收率预测方法。非混相驱替时,重力泄油数与采收率具有很好的相关性,修正重力泄油数与采收率的相关性更好;混相驱替时,重力泄油数与采收率的相关性差一些,但修正重力泄油数与采收率的相关性较好。实例应用表明,经过修正的采收率预测方法计算的结果更接近实际采收率。  相似文献   
8.
水侵量计算是实现气藏高效开发的基础工作。基于水驱气藏物质平衡方程,利用生产动态数据计算水侵量是较为简便的计算方法,但对于凝析气藏来说,当压力低于露点压力后,凝析油析出,水驱气藏物质平衡方程不再适用。通过物质平衡原理,建立了考虑反凝析现象、水侵及岩石、束缚水和凝析油弹性膨胀的水驱凝析气藏物质平衡方程,推导出水驱凝析气藏水侵量计算方法。实例应用表明,与常规水驱气藏计算的水侵量相比,水驱凝析气藏计算的水侵量较小,其考虑了凝析油析出,计算的水侵量较为准确。  相似文献   
9.
鄂尔多斯盆地旬邑探区延长组开发潜力较大,储层特征的定量评价对准确预测开发效果具有指导意义。选取延长组6段(长6)和延长组8段(长8)储层典型岩心进行实验分析,核磁共振实验结果显示长6和长8储层孔喉分布特征较为单一,不进行离心实验的情况下可利用核磁共振渗透率和T2几何平均值计算可动流体百分数。恒速压汞实验结果表明,孔隙比喉道发育均匀,未开展其他实验的情况下可利用恒速压汞实验计算孔隙度。通过建立核磁共振和恒速压汞耦合求取完整孔喉半径分布的方法,确定了旬邑探区延长组长6和长8储层的表面弛豫率为0.15 μm/ms。核磁共振孔喉半径分布的计算结果显示,长6储层孔喉半径分布范围为0.01~433.10 μm,长8储层孔喉半径分布范围为0.01~403.91 μm,长6储层孔喉发育比长8储层均匀。通过定义拟粒间孔和拟溶蚀孔,拟溶蚀孔绝对体积占比揭示,长8储层渗流能力强于长6储层。建立了"拟溶蚀孔+含油饱和度"方法预测开发效果,分析认为拟溶蚀孔对试油产量的影响更大,进一步揭示了旬邑探区长8储层整体开发效果好于长6储层。  相似文献   
10.
基于模糊优化分析法的页岩气开发选区模型   总被引:1,自引:0,他引:1       下载免费PDF全文
在综合考虑地质条件、经济效益、环境影响等多方面影响因素的前提下,并在收集了大量的页岩气基础资料和借鉴前人研究成果的基础上,详细分析了页岩储层地质因素对页岩气富集程度和开发效果的影响,建立了相应的页岩气开发核心区选区模型。根据指标选择原则建立页岩气开发核心区选区评价指标体系,并对各指标数据进行定量规范化处理。通过专家评议和层次分析相结合的方法确定评价指标的权重。最后以我国一些具体的页岩气开发有利区为例,利用模糊优化法对这些有利区进行综合评价,通过结果分析,最终优选出可进行试验开发的页岩气开发核心目标区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号