首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
应用PROII化工过程模拟软件对催化裂化装置吸收稳定系统不同工况(不同解吸塔进料方式、不同解吸塔中间介质抽出位置、解吸塔底设置两个重沸器、不同稳定塔进料方式、稳定塔设置中间重沸器及稳定塔提压)进行模拟。根据模拟结果、工艺比较和系统能耗分析认为解吸塔冷进料加设置解吸塔中间重沸器是最优的解吸塔进料流程;解吸塔中间介质的适宜抽出位置在解吸塔中部稍靠下;随着装置规模的增大,为了合理安排换热流程,有必要在解吸塔和稳定塔底设置两个重沸器;从能耗分析和分离精度来看,稳定塔冷进料方式优于稳定塔热进料方式;为了降低稳定塔底热负荷,合理利用低温位热源,可以考虑在稳定塔中部设置中间重沸器,中间介质的抽出位置在稳定塔提馏段的中下部较为适宜。稳定塔顶提压流程是比较合理的工艺流程。  相似文献   

2.
开发了一种吸收塔带有侧线抽出的节能流程,新增吸收塔下部侧线液相采出经冷却进入平衡罐,吸收塔底油直接进入稳定塔。并从能量效益方面对比分析新流程与传统“四塔流程”。研究表明,与传统“四塔流程”相比,新流程的解吸塔再沸器负荷、平衡罐前冷却器负荷及系统能耗分别降低12.2%,10.4%,5.2%。  相似文献   

3.
针对目前催化裂化装置吸收稳定系统普遍存在的燃料干气中C3+液化气组分携带严重即"干气不干"和能耗较高的问题,从流程结构和操作参数两方面进行分析,找出造成干气不干和能耗高的主要原因,并以此为基础集成现有先进研究成果针对性地提出一个优化的吸收稳定系统工艺流程和操作方案:解吸塔设置中间再沸器并采用全冷进料;稳定塔新增下部侧线,抽出轻汽油代替稳定汽油作吸收塔补充吸收剂;适当提高凝缩油罐操作温度和降低吸收塔操作温度。与现有流程和操作相比,提出的优化流程及操作方案可使干气中C3+液化气组分体积分数降低42.09%、系统能耗降低17%。  相似文献   

4.
以典型的吸收稳定四塔流程作为研究对象,通过流程模拟软件PRO/Ⅱ模拟计算结果与装置标定数据的对比分析,确定模拟过程的热力学方法为SRK以及参数规定。在确定吸收稳定系统干气、液化气和稳定汽油等产品质量的条件下,对各影响因素进行分析,研究其对系统能耗和吸收效果的影响,指出系统优化的操作参数为:补充吸收剂流量29 t/h,系统操作压力1.4 MPa,稳定塔进料位置和温度分别为第12块理论板和138 ℃,解吸塔热冷进料比例为7:3。模拟计算结果表明,通过优化操作参数,可使系统冷热负荷分别降低约4%和5%。  相似文献   

5.
酸性水汽提装置是炼油厂重要的环保装置,随着装置大型化与进口原料油硫含量的逐步升高,酸性水汽提装置能耗水平受到关注。利用Apen Plus软件对酸性水汽提装置进行了模拟,探讨了汽提塔热冷进料比例、热进料温度、侧线抽出位置对再沸器负荷和产品质量的影响。研究结果表明,适当提高热冷进料比例或热进料温度,有利于降低再沸器热负荷,从而降低装置能耗;汽提塔侧线位置不宜过高或过低,应有一个较优的抽出位置。在进行各参数优化调整时,应密切关注净化水中NH3含量,防止其超标。  相似文献   

6.
应用流程模拟和总体优化设计技术,对当前催化裂化装置吸收稳定系统广为采用的"双塔流程”进行了理论计算和分析,指出了该流程存在的严重缺点①吸收塔釜液和解吸塔塔顶汽相采出这两股大流量返回物料并非必要;②解吸塔进料温度过高;③吸收塔和解吸塔效率低;④不同工艺参数之间的强烈耦合.对于1.2Mt/a的催化裂化装置吸收稳定系统在流程不变的条件下进行工艺参数的最佳匹配,年经济效益不低于4.0×106RMB$.解决"双塔流程”缺点问题的根本方法是对现有流程进行改进,开发一种新的、节能的工艺流程.  相似文献   

7.
提出了一种设置解吸塔进料预热器、二级冷凝器、中间再沸器的强化传质与节能型吸收稳定系统的工艺流程,通过建立基准流程和节能流程的模拟模型,对工艺流程进行分析与评价。结果表明:通过设置进料预热器,可提高一级冷凝液相进入解吸塔的温位;通过将解吸气与一级冷凝气直接混合,可避免解吸气与吸收塔塔底油及压缩富气的混合,降低一级冷凝器负荷;节能流程可强化解吸塔的传质效率,合理降低吸收稳定系统的总公用工程负荷;相对于基准流程,节能流程的能耗可降低22.02%,解吸塔内的气相和液相负荷均有所降低,具有强化传质、优化节能、缓解塔内气液相负荷的优点。  相似文献   

8.
应用Aspen Plus模拟软件对比分析了常用的解吸塔3种进料方式(热进料、冷进料及冷热双股进料)对整个吸收稳定系统的影响,得出解吸塔冷进料的分离效果最好,冷热双股进料的用能最好,热进料分离效果及用能效果均最差,这3种进料方式都没有解决稳定汽油余热利用与分离效果之间的矛盾。在以上的基础上对解吸塔辅助重沸器流程进行了对比分析,得出辅助重沸器流程吸收效果、总冷却负荷和总加热负荷与冷进料接近,但解吸塔底重沸器负荷最小,虽然设备投资稍有增加,但是由于合理、充分地利用了稳定汽油的余热,降低了延迟焦化装置的能耗,其经济效益也是最好的。  相似文献   

9.
针对目前吸收稳定系统运行中存在的干气中含有大量的液化气(C3、C4)组分、能耗高、产品质量难以达标等问题,对解吸塔进料、吸收塔进料和吸收剂选择等多种节能型改进流程的适用性和节能效果进行分析,为该过程的工艺改进提供有益启示.  相似文献   

10.
提出了一种设置解吸塔进料预热器、二级中间冷凝器、中间再沸器的强化传质与节能型吸收稳定系统的工艺流程,通过建立基准流程和节能流程的模拟模型,对工艺流程进行分析与评价。结果表明:通过设置进料预热器,可提高一级冷凝液相进入解吸塔的温位;通过将解吸气与一级冷凝气直接混合,可避免解吸气与吸收塔塔底油及压缩富气的混合,降低一级冷凝器负荷;节能流程可强化解吸塔的传质效率,合理降低吸收稳定系统的总公用工程负荷;相对于基准流程,节能流程的能耗可降低22.02%,解吸塔内的气相和液相负荷均有所降低,具有强化传质、优化节能、缓解塔内气液相负荷的优点。  相似文献   

11.
利用一种新的催化裂化吸收解吸系统数学模型^[1]进行详细的模拟计算,对系统温度与压力、吸收塔中段回流流率等工艺参数进行了全面分析,探讨了每一项工艺参数影响吸收解吸系统分离效果的规律。在此基础上,运用正交设计法给出了4种可供新建装置、装置改造或操作优化使用,确定其吸收解吸系统工艺参数的最佳方案。  相似文献   

12.
利用KBC公司的Petro-SIM软件进行过程模拟和总体优化,找出解析塔塔底温度、补充吸收剂量和稳定塔回流量等关键参数分别对各产品质量的影响关系,提出合理的控制范围来指导生产。采用调优后的参数进行操作,实际运行情况与模拟结果基本相符,可以使装置工况达到最优化。  相似文献   

13.
针对国内吸收稳定系统普遍存在的干气中C3、C4含量较高、液化气产率低等问题,以国内某石化企业延迟焦化装置为例,在计算机模拟与分析的基础上,探讨吸收稳定系统的模拟策略,如单元模型、热力学方法的选取等,并对影响系统分离效果的主要因素进行分析,提出改善吸收稳定过程分离效果的操作方案。结果表明:RKS方程是较适宜应用于吸收稳定系统的热力学模型,其模拟计算结果与工业标定数据吻合较好;从全流程角度出发,解吸塔进料温度升高、稳定汽油吸收剂流量降低都有利于系统节能,但系统吸收效果出现下降;解吸塔塔釜温度对液化气组成与流量、干气中C3、C4含量都有一定的影响,在生产中应充分重视解吸塔塔釜温度的波动;稳定塔的回流比存在一个"理想值",小于该值时随回流比增加系统吸收效果改善明显,实际操作回流比应小于该"理想值"。  相似文献   

14.
以中国石油华北石化公司催化裂化装置吸收稳定系统为研究对象 ,通过对各设备、物流及吸收稳定系统流程的研究 ,建立了计算机模拟系统。应用该套模拟系统对影响吸收效果及能耗的各单因素进行严格的计算机模拟计算 ,完成各塔流体水力学计算 ,找出了制约装置能力提高以及吸收效果的因素。通过改造 ,装置的最大生产能力由 0 .76Mt/a提高到了 0 .92Mt/a。  相似文献   

15.
催化裂化吸收解吸系统传质分析及流程改进   总被引:3,自引:2,他引:1  
对催化裂化装置吸收解吸系统的传质过程进行流程模拟,以寻找该系统的节能途径。模拟结果表明,吸收解吸系统的分离过程存在类似于精馏操作的双向传质过程,在此基础上提出一种由吸收冷却塔和吸收解吸塔构成的吸收解吸节能新流程。模拟结果表明,该吸收解吸节能新流程比目前中间加热双塔流程的总能耗降低15%以上。  相似文献   

16.
利用Aspen Plus流程模拟软件,选取BK10计算方法,对以加氢抽余油为原料生产工业级正己烷双塔精馏过程进行模拟。模拟结果表明,在装置满负荷开车情况下,相对于实际生产过程中的塔参数和产品质量,模拟值的相对误差小于5%,验证了模拟计算所涉及的诸如等板高度、全塔效率等参数以及模型的选取均为合理。通过分析两塔操作压力、回流温度、进料位置和进料状况对系统能耗的影响,获得最优工艺条件,提出对装置的改造措施。根据系统特点,提出双效逆流精馏及热集成节能方案,水力学核算结果表明,该节能方案在技术上可行;工艺模拟结果表明,节省操作费用300.9万元/a,下降幅度为53.1%。  相似文献   

17.
介绍了金陵分公司1300 kt/a重油催化裂化装置吸收稳定系统流程改造及优化措施,对流程改进前后在分离效果和能耗方面进行了对比。结果表明,经过改造,FCC干气中液化气的体积分数由3.0%~3.2~下降到1.0%~1.3%,稳定汽油蒸气压得到有效控制,同时实现了节能增效的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号