首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国食品添加剂》2020,(2):132-137
研究了莱菔素-羟丙基-β-环糊精包合物的制备工艺及表征,通过单因素试验和正交试验确定包合物的最佳包埋工艺为:芯壁比1∶6,包合温度70℃,包合时间3h。通过红外光谱仪对包合物的定性分析表明,莱菔素-羟丙基-β-环糊精包合物已经形成。  相似文献   

2.
印奇果油-羟丙基-β-环糊精包合物制备工艺研究   总被引:1,自引:0,他引:1  
目的制备印奇果油-羟丙基-β-环糊精包合物。方法采用饱和溶液法制备印奇果油-羟丙基-β-环糊精包合物;采用L9(34)正交设计,优化印奇果油-羟丙基-β-环糊精包合物制备工艺;采用喷雾干燥法将其制备成粉末;采用单因素分析法优化印奇果油-羟丙基-β-环糊精包合物的最佳喷雾干燥工艺。结果以包合率为指标,印奇果油-羟丙基-β-环糊精包合物的最佳制备工艺为A2B1C2,即当包合温度为60℃,搅拌时间为30 min,药液滴加速度为1 m L/min时,包合率最高。按最佳工艺参数进行3次平行试验,平均包合率为36.94%,相对标准偏差(RSD)为1.06%。结论以最佳工艺制备包合物,工艺稳定可行。  相似文献   

3.
对八角茴香精油/羟丙基-β-环糊精包合物制备工艺进行了研究。以包合率(%)为响应值,主客比(mg∶mg)、包合时间(h)、包合温度(℃)为自变量,在单因素试验的基础上,通过响应面设计确定了最佳包合工艺为:主客比(mg∶mg)49.6,包合时间98.03h,包合温度33.1℃,此时包合率为72.29%。而且包合时间与包合温度的交互作用显著。UV光谱分析结果显示,体系中加入羟丙基-β-环糊精后,八角茴香精油的最大吸收波长由258nm移至257nm,且E带吸收和B带吸收均出现了蓝移,证明了包合物的形成。  相似文献   

4.
目的:考察青藤碱与环糊精形成包合物的最佳条件,测定青藤碱与不同环糊精的包合常数并进行体外释放研究。方法:通过单因素及正交试验确定青藤碱与不同环糊精形成包合物的最佳条件,并在此条件下利用相溶解度法测定青藤碱与β-环糊精、羟丙基-β-环糊精、γ-环糊精的包合常数,对包合物进行体外释放试验研究。结果:青藤碱与不同环糊精形成包合物的最佳条件为物质的量的1:1、包合温度50℃、包合反应3h、包合反应时溶液pH7,青藤碱与β-环糊精、羟丙基-β-环糊精、γ-环糊精的包合常数分别为501.1、150.0、600.3L/mol。结论:青藤碱与环糊精可以形成1:1型稳定的包合物,以环糊精为载体制备的不同青藤碱-环糊精包合物相对于青藤碱具有明显的缓释作用。  相似文献   

5.
研究匙羹藤总皂甙与β-环糊精包合物的制备工艺.采用饱和水溶液法,在单因素试验的基础上,通过正交试验,考察投料比、包合温度、包合时间对包合物收率和包合率的影响.最佳包合条件为:β-环糊精与匙羹藤总皂甙比例1:1,包合温度50℃,包合时间3 h.该制备工艺稳定,可用于匙羹藤总皂甙-β-环糊精包合物的制备.  相似文献   

6.
袁超  蔡敏 《粮油加工》2010,(7):118-120
应用均匀设计法,选取羟丙基-β-环糊精浓度、主客比、反应温度和搅拌速度4个因素对虾青素/羟丙基-β-环糊精包合物制备工艺进行了优化。得到的最佳工艺参数是:羟丙基-β-环糊精浓度3.00mol/L,主客体摩尔比60,反应温度20℃,搅拌速度1000r/min,此时预测的包合率是54.0%(±5.91%),在此条件下实际测定的包合率为51.6%,优化工艺切实可靠。  相似文献   

7.
为了提高薰衣草精油的物理化学稳定性,采用羟丙基-β-环糊精对其进行包埋。并通过响应面法优化薰衣草精油包合物的制备工艺,以期找到一种最佳的包合工艺条件。同时,利用红外光谱和拉曼光谱分析方法,实现对薰衣草精油包合物的结构及包合情况分析,进而验证薰衣草精油被羟丙基-β-环糊精较好的包埋。实验所得的最佳包合工艺为:羟丙基-β-环糊精与薰衣草精油比例6.27:1(g:mL)、包合温度33.1℃、包合时间3.36 h,包合率可达80%。通过光谱分析可知,羟丙基-β-环糊精和包合物谱图极其相似,这说明薰衣草精油中许多基团被包埋进入环糊精空腔。结果表明,羟丙基-β-环糊精包合精油效果较好,该优选工艺稳定可行,能够为薰衣草精油的应用提供一定参考。  相似文献   

8.
采用超声法制备牡丹籽油-羟丙基-β-环糊精(牡丹籽油-HP-β-CD)包合物,以包合率和包合物得率的综合评分OD值为评价指标,在单因素试验基础上采用Box-Behnken响应面法优化包合工艺条件。确定牡丹籽油-HP-β-CD包合物的最佳制备工艺条件为:超声功率360 W,包合温度46.5℃,牡丹籽油与HP-β-CD质量比1∶6.6。在最佳工艺条件下,包合物得率为85.53%,包合率为92.00%,综合评分OD值为89.41%。经红外光谱法鉴别,已形成牡丹籽油-HP-β-CD包合物。  相似文献   

9.
通过旋转蒸发法制备了槲皮素/2-羟丙基-β-环糊精包合物(Qu/2-HP-β-CD-IC),并采用静电纺丝法将其负载到纳米纤维膜上。通过扫描电镜(SEM)、红外光谱(FTIR)、差示扫描量热分析(DSC)、X射线衍射(XRD)等方法对包合物进行表征。结果表明:在Qu与2-HP-β-CD的摩尔比为1∶1,包合温度为60℃,包合时间为2 h的条件下,成功制备了槲皮素/2-羟丙基-β-环糊精包合物;在相同温湿度条件下,负载槲皮素/2-羟丙基-β-环糊精包合物的纤维膜的抗紫外线性能更佳,槲皮素的生物利用度得到提高。  相似文献   

10.
通过单因素及正交试验确定青蒿素与3种环糊精形成包合物的最佳条件,在此条件下利用相溶解度法测定青蒿素与β-环糊精、羟丙基-β-环糊精、γ-环糊精的包合常数并计算包合反应前后的吉布斯自由能。结果表明:青蒿素与环糊精形成包合物的最佳条件为配比1:1(mol/mol)、包合温度40℃、包合时间5h、包合反应时溶液pH7,青蒿素与β-环糊精、羟丙基-β-环糊精、γ-环糊精的包合常数分别为80.06、58.68、116.96L/mol,反应前后的吉布斯自由能变化分别为-11.76、-10.93、-12.78kJ/mol。表明青蒿素与环糊精可以形成1:1型稳定的包合物,环糊精可以增大青蒿素的溶解度。  相似文献   

11.
以羟丙基-β-环糊精(HPBCD)为主体,采用饱和水溶液法对苦参素(OMT)客体进行包合。考察了包合过程中包合温度、时间、主客体摩尔比对包合物包覆率和产率的影响,在温度为30℃、主客体投料摩尔比为1∶3、包合时间为5 h条件下所得包合物的包覆率为83%。对包合物进行了红外光谱表征,通过扫描电镜观察,热稳定性分析,表明所得包合物的溶解性和稳定性良好。  相似文献   

12.
以玫瑰香精和羟丙基-β-环糊精(HP-β-CD)为原料,采用水浴恒温磁力搅拌法制备玫瑰香精-HP-β-CD包合物;通过L9(34)正交试验对制备工艺进行了优化,并以挥发油包合率和包合产率为指标评价了包合工艺,利用红外(FT-IR)和薄层层析色谱(TLC)对包合物进行了表征。结果表明:HP-β-CD与玫瑰香精形成了包合物,且在包合过程中未改变玫瑰香精的化学成分,提高了玫瑰香精的缓释效果。最佳制备工艺:玫瑰香精1mL,m(HP-β-CD/g)︰V(玫瑰香精/mL)=6︰1,搅拌速度700 r/min,包合温度为50℃,包合时间为5 h。影响因素的大小依次为:包合温度>搅拌速度>玫瑰挥香精和H-β-CDP的投料比>包合时间。  相似文献   

13.
以收率和包合率为指标,采用饱和水溶液法制备核桃油-β-环糊精包合物,通过单因素和正交试验确定优化工艺条件,并考察产品氧化稳定性和水溶性。结果表明:最佳制备工艺条件为核桃油与β-环糊精质量比1:4、包合时间4.5h、包合温度65℃,此条件下包合率达81.6%、收率达61.6%;经紫外分光光度法检测,核桃油-β-环糊精已形成包合物,核桃油-β-环糊精包合物可明显提高核桃油的氧化稳定性和水溶性。  相似文献   

14.
为了优化月见草油-β-环糊精包合物的制备工艺。采用饱和水溶液法制备月见草油β-环糊精包合物,以β-环糊精与月见草油的投料比、包合温度和包合时间为考察因素,月见草油包合物包合率和包合物得率的综合评分为指标,通过星点设计-响应面法优化制备工艺,经红外分析和差示扫描量热进行包合物形成的验证。最佳包合工艺为β-环糊精与月见草油投料比为5∶1 m L/g、包合温度55℃、包合时间1.8 h,在此最佳工艺条件下,月见草油-β-环糊精包合物的包合率和包合物得率分别为81.56%和92.28%。实验证明月见草油可与β-环糊精形成稳定的包合物,为月见草油的应用开发提供了理论基础。  相似文献   

15.
为提高番茄红素的稳定性,采用超声法制备番茄红素β-环糊精包合物,并对其稳定性进行研究。采用L9(34)正交试验对超声法制备番茄红素β-环糊精包合物工艺进行优选,以包合率为指标,考察超声功率、超声时间、番茄红素与β-环糊精物质的量的比对番茄红素包合的影响。结果得到包合的最佳工艺条件为超声功率250W、超声时间25min、番茄红素与β-环糊精物质的量的比1:150,番茄红素的包合率可达73.6%,包合的番茄红素在60d内保留率达到92.2%。超声法制备番茄红素β-环糊精包合物是一种适宜的提高番茄红素的稳定性的方法。  相似文献   

16.
为了建立番茄红素-β环糊精包合物的制备工艺,以番茄红素为试验材料,采用饱和溶液法制备番茄红素-β环糊精包合物。以有机溶剂比例、主客体摩尔比、搅拌时间、搅拌温度、冷藏时间为考察因素,包合率为主要评价指标,采用单因素试验和正交试验对番茄红素-β环糊精包合物的制备工艺参数进行优化。试验结果表明:番茄红素-β环糊精包合物的最佳制备工艺参数为丙酮/正己烷(V/V)2︰1、番茄红素/β-环糊精(摩尔比)1︰200、搅拌时间20 h、搅拌温度50℃、冷藏时间12 h,在此条件下包合率高达71.8%。极差分析与方差分析结果表明,主客体摩尔比是影响包合效果最显著的因素。  相似文献   

17.
赵玲  苏健裕  陈建平  胡松青  李琳 《食品工业科技》2012,33(20):148-150,155
目的:利用超声波法制备氟苯尼考-β-环糊精包合物,并对其结构进行表征。方法:以β-环糊精为包合剂,采用超声法制备氟苯尼考包合物,工艺参数为氟苯尼考与β-环糊精投料比1:1(mol/mol),超声温度60℃,超声时间5h。然后分别采用傅里叶红外光谱法(FIIR)、X-射线粉末衍射法(XRD)对包合物进行结构表征。结果:在该制备工艺条件下包合物的得率为93.52%,包合率为38.09%;且经过FIIR和XRD确证其包合物已形成。结论:采用本实验工艺具有较好的得率,氟苯尼考被β-环糊精包合后呈现出新的物相特征。  相似文献   

18.
密封控温法制备控释材料肉桂醛-β-环糊精包合物   总被引:3,自引:0,他引:3  
以肉桂醛和β-环糊精为原料,采用密封控温法制备控释包合物,并确定了包合工艺参数和释放特性。结果表明,通过由单因素及响应面试验对包合工艺进行优化,最终包合条件为:时间温度100℃,加热2.5h,β-环糊精与肉桂醛包合比1:1.75。同时用红外光谱对包合物进行鉴定,发现已形成包合物。包合物中肉桂醛释放速率与环境的相对湿度密切相关,与环境温度关系不大。  相似文献   

19.
超声法制备熊果酸/β-环糊精包合物的研究   总被引:2,自引:0,他引:2  
采用超声法制备熊果酸/β-环糊精包合物,以熊果酸包合率为指标,通过正交试验优化包合条件,并采用红外光谱、X射线衍射、差示扫描量热和扫描电镜等手段对包合物的性质进行研究.结果表明,其最佳工艺条件为:超声功率200 W、熊果酸:β-环糊精(摩尔比)=1:1、超声时间40 min、温度30℃.在该条件下,熊果酸包合率为68.2%.  相似文献   

20.
研究响应面法对番茄红素β-环糊精包合物制备工艺的优化。以番茄红素结晶为试验原料,在单因素试验的基础上,以番茄红素结晶与β-环糊精饱和溶液比、包埋时间、包埋温度为自变量,番茄红素的包埋率为响应值,采用Box-Behnken试验设计,利用响应面分析法对番茄红素β-环糊精包埋工艺进行优化。结果表明,最佳工艺条件为番茄红素结晶:β-环糊精饱和溶液1.4∶1(mg/mL)、包合温度49℃、包合时间70min。在此条件下,β-环糊精包合番茄红素的包埋率的预测值为92.10%,验证值最高达91.04%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号