首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pullulanase debranching of sago (Metroxylon sagu) starch in the granular state and subsequent physical treatments on the formation and yield of type III resistant starch (RS 3) have been investigated. Sago starch was enzymatically debranched with pullulanase at 60°C and at pH 5.0 using different enzyme concentrations (24, 30, 40, 50 PUN/g dry starch) which was added to 20% (w/v) starch slurry and incubated for 0 to 48 h. Optimum enzyme concentration of 40 PUN/g dry starch and three debranching times (8, 16 and 24 h) have been selected for subsequent preparation of RS. Granule morphology and molecular weight distribution (MWD) of the debranched and resistant starch were examined. Debranched starch samples showed blurred birefringence patterns, a decrease in amylopectin fraction, an increase in low molecular weight fraction and a broadening of MWD. Debranched starch samples with a maximum RS yield of 7% were obtained at 8 h debranching time. Temperature cycling and incubation at certain temperature and storage time enhanced the formation of RS. Under the conditions used in this study, the optimum conditions to obtain the highest RS yield (11.6%) were 8 h of debranching time, followed by incubation at 80°C for seven days. The MWD analysis showed that RS consisted of material with relatively low degree of polymerization. This study showed that pullulanase treatment of starch in the granular state resulted in limited debranching of amylopectin but the subsequent physical treatments (incubation time/temperature) can be manipulated to promote crystallization and enhance formation of RS 3.  相似文献   

2.
以高直链玉米淀粉G50和G70为原料,经酸解、糊化、脱支和重结晶步骤获得III型抗性淀粉,通过退火与压热处理以进一步提升淀粉的抗性比例。采用扫描电子显微镜、X射线衍射、差示扫描量热、快速黏度分析等方法,研究淀粉颗粒形貌、结晶结构、热特性及糊化特性,利用Englyst法测试淀粉消化特性。结果表明:高直链玉米淀粉G50和G70酸解后的得率分别为77.9%和84.5%,重结晶后的得率降为54.4%和70.2%。原G50和G70改性后,淀粉颗粒形貌被破坏,形成大小不等、颗粒形貌不规则的团聚体;淀粉结晶型由B+V型转变为A+V型,且结晶度升高;淀粉糊化温度升高,且加热过程中黏度几乎消失。溶解与膨胀特性结果表明,经酸解、糊化、脱支和老化处理后原G50和G70的溶解性显著升高,退火和压热处理后降低了III型抗性淀粉的溶解性和膨胀度。体外消化特性分析表明,改性后的G50和G70具备更强的抗消化性能,抗性淀粉含量最高可达80.5%(G70-RS3-压热20%)。本研究的改性处理能有效提高高直链玉米淀粉G50和G70中抗性淀粉含量,同时抗性淀粉含量与结晶度和糊化温度呈显著正相关。  相似文献   

3.
Debranching and autoclaving processes of banana starch were carried out for obtaining a resistant starch-rich powder with functional characteristics. Debranching was carried out using pullulanase for 24 h and the autoclaving was done at 121 °C for 30 min, the samples were then cooled down and stored between 24 and 48 h, and temperatures between 4 and 60 °C. The resistant starch level increased due to the debranching and autoclaving processes. The water absorption index values decreased when the storage time increased, pattern that agrees with the higher RS content. The water solubility index (WSI) was affected by the storage temperature but not by the storage time. The autoclaved sample was hydrolyzed to a lesser extent than native starch. The RS-rich powder presented also crystallinity because the process of autoclaving and storage induced starch retrogradation. The procedure proposed might be used for production of a RS-rich powder from banana starch with high RS level and functional properties.  相似文献   

4.
A novel technology for banana starch modification has been developed using dielectric barrier discharge (DBD) plasma, and the effect of DBD plasma treatment on the solubility and pasting behaviours of banana starch were evaluated. The solubility of treated starch significantly increased from 1.35 to 15.05 g 100 g−1 at 55 °C as the treatment intensity increased. Rapid viscosity analyser examination showed a dramatic change in the pasting behaviours of modified starch, and the peak viscosity decreased from 5242.0 to 153.0 (cP) as the treatment intensity increased. Evidence of nonpenetrative damage caused by plasma etching was shown by scanning electron microscope micrographs. The results of X-ray diffraction and Fourier-transform infrared spectroscopy analyses indicated that the DBD treatment changed the granular structure of banana starch.  相似文献   

5.
A resistant starch (RS)‐rich powder was prepared from phosphate cross‐linked banana starch. Serial autoclaving and cooling treatments of this cross‐linked material were also made. The powders were evaluated for chemical composition, resistant starch content, thermal characteristics, as well as for swelling and solubility properties. The parental cross‐linked starch had similar lipid and protein contents than its autoclaved counterpart, but the ash content decreased after autoclaving, a pattern that is in agreement with the low phosphorus index and degree of substitution recorded in the autoclaved preparation. Although the RS content in the autoclaved cross‐linked product was lower than in the non‐autoclaved starch, the autoclaved product still exhibited a remarkable indigestibility. The peak temperatures of gelatinization were 86.6 and 68.5ºC for cross‐linked and autoclaved cross‐linked starch, respectively. At low temperatures the autoclaved modified starch exhibited greater swelling values than its cross‐linked counterpart. The pattern of solubility values resembled the swelling behavior of both samples. The autoclaved cross‐linked banana starch appears suitable for the formulation of foods requiring none or moderate further heat treatment.  相似文献   

6.
Pearl millet, an underutilized crop, is a relatively good source of nutrients and has varied uses over cereals. New applications must be explored to popularize the millet. In the present study, flour and isolated starch from pearl millet cultivars—Kalukombu and Maharashtra Rabi Bajra (MRB)—were investigated for physicochemical properties, nutritionally important starch fractions and x-ray diffraction. The yield of starch was significantly low (Kalukombu: 34.5 g/100 g and MRB: 39.4 g/100 g) with traces of non-starch components (protein, fat, and ash) indicating its purity. Starch could be classified as non-waxy type based on low amylose content (2.86–4.96 g/100 g). Low amylose lead to fragility of swollen starch granules which disintegrated easily at 65°C as observed in swelling power and solubility. Isolated starch was characterized with low water- and oil-holding capacity which could be attributed to the low protein content and absence of fiber in the starch. However, MRB starch showed higher oil uptake compared to flour, possibly due to its larger surface area that increased oil uptake. X-ray diffraction patterns showed sharp peaks at 2θ values 15 and 23º and a diffused peak at 2θ of 17 and 18º which is characteristic of A-type pattern. Low resistant starch (RS) and high readily digestible starch (RDS) content observed in the isolated starch could be attributed to the A-type pattern of starch which is more susceptible to enzyme hydrolysis and also due to elimination of structural obstruction to amylase hydrolysis during the process of starch isolation and gelatinization.  相似文献   

7.
In the present work, the hydration and retro-gradation of mixtures of wheat starch and fructooligosaccharides in diluted hydrated matrixes were discussed. Rapid Visco-Analyzer, differential scanning calorimeter, Fourier transform-infrared spectroscopy, scanning electron microscopy, and x-ray diffraction were used to determine the properties of the mixture of wheat starch and fructooligosaccharides. Swelling of the wheat starch showed significant changes when the addition of fructooligosaccharides surpassed 0.1 g/g starch. Water absorption index showed obvious change but there was no regular variation. The water solubility index of starch increased after adding the fructooligosaccharides and the highest value was up to 19.85 as compared with the control (3.61). There was no significantly change for the pasting parameters of the mixture. Fructooligosaccharides significantly affected the enthalpy of wheat starch from the result of differential scanning calorimeter analysis, and enlarged the freezing scope of the mixture gel (from –23.09 ± 0.25ºC to –38.85 ± 0.32ºC). The melting enthalpy of sample with fructooligosaccharides decreased by 9.9 J/g as compared with the control. Fourier transform-infrared spectroscopy results showed that there were no obvious differences between the samples with or without fructooligosaccharides except that the O–H stretching vibration of hydrogen bond of the mixture gel strengthened after storage for 2 or 4 days. Scanning electron microscopy results indicated fructooligosaccharides should be conductive for starch to form fine gel structures and could inhibit the retrogradation of wheat starch. X-ray diffraction spectrum further illustrated the fructooligosaccharides could interfere with the retrogradation of wheat starch during storage.  相似文献   

8.
The effects of additives (sucrose, glucose, and sodium chloride) on textural properties of native and annealed corn starch gels were measured using differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and texture analyzer. Annealing temperature, additive concentration, and pH affected the corn starch gels. Firmness, consistency, cohesiveness, and viscosity values ranged from 20.55 to 43.70 g, 213.67 to 412.00 g/sec, –25.81 to –15.22 g, and –104.21 to –6.73 g/sec, respectively. The eigenvalue of the texture characteristics of annealed corn starch decreased without additives, and increased with additives. Annealing at 55°C had more effect than did annealing at 45°C.  相似文献   

9.
The culinary banana peel, which is an agricultural waste available in abundance, has not been able to draw much attention in terms of its utilization. In addition to being an abundant source of functional and nutritional compounds, it also deserves to be utilized in a proper and/or better way. The aim of this study was to explore this agro-waste at different levels of maturity in order to identify the active compounds at particular stage of maturity. Phenolics, flavonoids, and radical scavenging activity were maximum at early developmental stage, whereas compounds like protein, fat, carbohydrates, and starch increased with maturity and declined at over-ripe stage. The starch present in the peel is of C-type as confirmed by x-ray diffractograms and crystalline in nature. The peel, at the edible mature stage 4, yielded a high cellulose content which could be used as a reinforcement material in high-performance biocomposites. The presence of various functional groups indicating the complex nature of the culinary banana peel was confirmed by Fourier transform infrared characterization. Scanning electron microscope micrographs revealed that microstructure of peel changes drastically and degradation of starch and other compounds occurred at the over-ripe stage. Hence, in this context, the culinary banana peel can serve as a potential biomaterial in industrial applications and can add a higher value to this locally important and underutilized crop.  相似文献   

10.
Resistant starch type III (RS III) was synthesised from cassava starch by autoclaving followed by debranching with pullulanase, at varied concentrations (0.4–12 U g?1) and times (2–8 h), and recrystallisation (?18 to 90 °C for 1–16 h). The highest RS III yield (22 g/100 g) was obtained at an enzyme concentration of 4 U g?1 after 8 h incubation, followed by recrystallisation at 25 °C for 16 h. Varying the recrystallisation conditions indicated that higher RS III yields (30–35 g/100 g) could be obtained at 90 °C within 2 h. Thinning cassava starch using α‐amylase prior to debranching using pullulanase did not further increase the RS III content. In vitro digestion data showed that whereas 44% RS III was digested after 6 h, the corresponding value for cassava starch was 89%.  相似文献   

11.
Unripe banana flour is a potential commercial ingredient in various food products for increased resistant starch and reduced gluten contents. In the present study, the pasting (rapid visco-analysis), gel texture (penetration test), thermal (differential scanning calorimetry), colour (tri-stimulus colour indices) and the resistant starch properties of unripe banana flour produced from different dessert banana varieties (n?=?10) cultivated in South Africa, were analysed and juxtaposed to wheat and maize flour. The functional properties varied significantly (p?≤?0.05) between banana varieties, and from wheat and maize flours, to various extents. Selected functional property ranges of unripe banana, wheat and maize flours, respectively included; flour colour index (63.16–76.42, 77.34 and 80.96), paste viscosity (405.5–556.6, 124.7 and 115.6 RVU), gelatinization temperature (64.67–71.21, 71.11 and 69.95?°C), gel firmness (7.24–11.44?×?10??2 N, 3.49?×?10??2 N and 6.56?×?10??2 N) and resistant starch content (19.9–47.4, 2.8 and 2.2% w/w). Multivariate analysis (principle component analysis) showed that the unripe banana flours from different varieties were distinguished from each other based on the pasting temperature. The unripe banana flours were distinguished from both wheat and maize flour based on breakdown and peak paste viscosities. The breakdown viscosity was the most positively related measure to the resistant starch content with a linear regression R-squared value of 0.898, indicating a significant role played by granule structure in resistance to enzymatic hydrolysis. The present research demonstrates that selection of appropriate dessert banana variety is important when replacing staple flours (wheat and maize) with unripe dessert banana flour as a functional ingredient.  相似文献   

12.
赵凯  李君  谷广烨 《食品科学》2017,38(1):177-181
以玉米原淀粉为原料,研究普鲁兰酶脱支处理糊化后制备缓慢消化淀粉(slowly digestible starch,SDS)过程中各影响因素(温度、p H值、酶用量、贮藏及干燥条件)对SDS形成的影响。结果表明,在57.5℃、p H 4.9、酶用量60 U/g的条件下脱支8 h,然后煮沸灭酶30 min,再经4℃冷藏、60℃干燥后,可得SDS含量为31.09%的产品。原淀粉、酶脱支处理样品及脱支并去除快速消化淀粉样品的X射线衍射图谱表明,脱支处理后,玉米淀粉结晶结构由A型向B型转变。因此,通过酶脱支处理提高SDS含量的可能原因是形成了新的结晶结构,SDS含量与结晶的数量和质量有关。采用酶法制备SDS具有较好的工业化应用前景。  相似文献   

13.
以酶解-压热法制备紫山药抗消化淀粉,考察了淀粉乳浓度、普鲁兰酶用量、酶解时间、压热时间对制备淀粉中抗消化淀粉含量的影响,通过正交试验和方差分析明确影响因素的重要性并优化工艺条件;比较分析了糊化淀粉、压热淀粉以及酶解-压热法制备淀粉的水解动力学。结果表明:酶解-压热法制备紫山药抗消化淀粉的含量随各因素水平的增加呈先增加后减小的趋势,优化的条件为:淀粉乳质量分数20%、普鲁兰酶用量8 U/g、酶解12 h、以120℃压热处理40 min 2次时,制备抗消化淀粉样品纯度为96.67%,其中抗消化淀粉含量为47.85%;水解特性研究表明:与糊化、压热法相比,酶解-压热法制备抗消化淀粉的水解率、水解指数与血糖指数均显著降低,具有更好的抗消化性。  相似文献   

14.
Cassava starch was debranched by treatment with isoamylase and pullulanase and the yield of resistant starch type III (RS III) optimized with respect to starch solids concentration (7.5‐15%, w/v), incubation time (8‐24 h) and enzyme concentration using central composite rotatable design. Higher concentrations of pullulanase (10‐35 U/g starch) compared to isoamylase (30–90 mU/g starch) were required to give a similar degree of starch hydrolysis within the experimental domain. A clear debranching end‐point was identifiable by following the reducing value, blue value and β‐hydrolysis limit of cassava starches debranched using isoamylase. It was difficult to define a debranching endpoint of pullulanase treatment by these parameters due to contaminating α‐D ‐(1→4) activity. The yield of RS III was significantly higher in isoamylolysates and increased steadily with increasing degree of hydrolysis to peak at 57.3%. Purification of the debranched material further increased the RS III yield to 64.1%. Prolonged (24 h) hydrolysis of cassava starch with high concentration of pullulanase (35 U/g) gave lower RS III contents in the purified (34.2%) and unpurified (36.2%) hydrolysates compared to 49.5 and 62.4%, respectively, at moderate pullulanase concentration (22.5 U/g) and incubation time (16 h).  相似文献   

15.
Cassava, sweet potato and arrowroot starches have been subjected to heat‐moisture treatment (HMT) under different conditions using a response surface design of the variables. A comparative study was performed on the pasting properties, swelling behaviour and the gelatinization properties of the modified starches and also on the rheological and textural properties of their pastes. X‐ray diffraction studies have shown that cassava starch exhibited a slight decrease in crystallinity, whereas sweet potato and arrowroot starches showed an increase in crystallinity after HMT at 120ºC for 14 h with 20% moisture. The swelling volume was reduced and the solubility was enhanced for all three starches after HMT, but both effects were more pronounced in the case of arrowroot starch. The decrease in paste clarity of the starch after HMT was higher in the case of cassava and sweet potato starches. Viscosity studies showed that the peak viscosity of all three starches decreased after HMT, but the paste stability increased as seen from the reduced breakdown ratio and setback viscosity. Studies on rheological properties have shown that storage and loss moduli were higher for the starches heat‐moisture treated at higher moisture and lower temperature levels than the corresponding native starches. Storage of the gel at ‐20ºC resulted in a significant increase in storage modulus for all the three starches. All the textural parameters of the gels were altered after the treatment which depended on the nature of the starch and also the treatment condition.  相似文献   

16.
Structural characterizations and digestibility of debranched high-amylose maize starch complexed with lauric acid (LA) were studied. The cooked starch was debranched by using pullulanase and then complexed. Light microscopy showed that the lipids complexed starches had irregularly-shaped particles with strong birefringence. Gel-permeation chromatograms revealed that amylopectin degraded to smaller molecules during increasing debranching time, and the debranch reaction was completed at 12 h. Debranching pretreatment and prolonged debranching time (from 2 h to 24 h) could improve the formation of starch lipids complex. X-ray diffraction pattern of the amylose–lipid complexes changed from V-type to a mixture of B- and V-type polymorphs and relative crystallinity increased as the debranching time increased from 0 to 24 h. In DSC thermograms, complexes from debranched starch displayed three separated endotherms: the melting of the free lauric acid, starch–lipid complexes and retrograded amylose, respectively. The melting temperature and enthalpy changes of starch–lipid complex were gradually enhanced with the increasing of debranching time. However, no significant enthalpy changes were observed from retrograded amylose during the starch–lipid complex formation. Rapidly digestible starch (RDS) content decreased and resistant starch (RS) content increased with the increasing of debranching time, while the highest slowly digestible starch (SDS) content was founded at less debranching time of 2 h. The crystalline structures with dense aggregation of helices from amylose-LA complex and retrograded amylose could be RS, while SDS mostly consisted of imperfect packing of helices between amylopectin residue and amylose or LA.  相似文献   

17.
Recombinant amylosucrase (200 U/mL) from Neisseria polysaccharea was used to produce digestion‐resistant starch (RS) using 1–3% (w/v) corn starches and 0.1–0.5 M sucrose incubated at 35°C for 24 h. Characterization of the obtained enzyme‐modified starches was investigated. Results show that the yields of the enzyme‐modified starches were inversely proportional to the original amylose contents of corn starches. After enzymatic reaction, insoluble RS contents increased by 22.3 and 20.7% from 6.9% of waxy and 7.7% of normal corn starches, respectively, using 3.0% starch as acceptor and 0.3 M sucrose as donor, while amylomaize VII showed the lowest increase (8.5%) in RS content. The crystalline polymorph of these enzyme‐modified starches resulted in the B‐type immediately after enzymatic reaction. The enzyme‐modified starches displayed higher melting peak temperatures (85.6–100.6°C) compared to their native starch counterparts (70.1–78.4°C). After enzymatic reaction, pasting temperature increased in waxy (71.9 → 77.6°C) and normal corn starches (75.3 → 80.6°C), and the peak viscosity of waxy corn starches increased from 264 to 349 RVU, whereas that of normal corn starches decreased from 235 to 66 RVU.  相似文献   

18.
Response surface methodology (RSM) was employed for the synthesis of cassava starch‐graft‐poly(acrylamide) using ceric ammonium nitrate as free radical initiator. Concentration of acrylamide, concentration of ceric ammonium nitrate, reaction temperature and duration of reaction were optimized using a 4‐factor 3‐level Box‐Behnken design. The dependent variables were percentage grafting (%G) and grafting efficiency (GE). Second order polynomial relationships were obtained for %G and GE, which explained the main, quadratic and interaction effects of factors. The highest%G and GE obtained were 174.8% and 90.7%, respectively. The optimum values of parameters predicted through RSM were 20 g acrylamide/10 g dry starch, 3.3 g/L ceric ammonium nitrate, 180 min reaction duration and 45ºC temperature with a %G of 190.0. For GE, the predicted levels of factors for the optimum value of 90.8% were 17.5 g acrylamide/10 g dry starch, 4.1 g/L ceric ammonium nitrate, 180 min reaction duration and 55ºC temperature. The graft reaction was confirmed by FTIR analysis, where the absorption bands corresponding to the C=O stretching and N‐H bending of the –CONH2 group were observed. Scanning electron microscopic studies on grafted starches revealed that the granular structure of the starch was affected by the reaction. X‐ray diffraction analysis showed that the crystallinity of starch was decreased as a result of grafting and the reduction was higher for the grafted starches with higher percentage grafting.  相似文献   

19.
Maize starch was treated by autoclaving–cooling cycles, coupled with acid or pullulanase hydrolysis to prepare resistant starch (RS). Debranching of retrograded or gelatinized maize starch with acid or pullulanase was studied to show the corresponding impact on RS formation. When maize starch was treated with three autoclaving–cooling cycles and retrograded maize starch was hydrolyzed at room temperature, with 0.1 mol L−1 citric acid for 12 h, analysis results showed that debranching of citric acid was helpful in RS formation for RS yield increased from 8.5 to 11%. Debranching of gelatinized or retrograded maize starch at 60 °C with pullulanase at addition level of 3 PUN g−1 starch showed a more favorable effect on RS formation. When gelatinized maize starch was hydrolyzed by pullulanase for 12 h and then treated with two autoclaving–cooling cycles, RS yield increased to 23.5%. If retrograded maize starch subjected to one autoclaving–cooling cycle was hydrolyzed by pullulanase for 10 h and then followed by two autoclaving–cooling cycles, RS yield elevated to 32.4%. The debranching effect of pullulanase on retrograded maize starch to help RS formation is obvious and most effective, indicating this treatment is applicable in RS preparation to increase the RS yield.  相似文献   

20.
目的 研究酶解酯化改性后玉米淀粉的吸附性能。方法 以玉米淀粉为原料, 超声乳化后用脱支酶酶解淀粉, 再用硬脂酸进行疏水改性得硬脂酸酶解淀粉。利用红外、X射线衍射对酶解淀粉及硬脂酸酶解淀粉进行结构表征, 并对其吸油性、吸附性进行测试。结果 酶解后淀粉的化学结构及结晶结构没有变化, 只是结晶比例增加, 硬脂酸酶解淀粉的衍射峰强度和位置发生变化; 与玉米原淀粉相比, 酶解淀粉及硬脂酸酶解淀粉的吸油率及对亚甲基蓝的吸附性提高, 且随着硬脂酸用量的增加, 硬脂酸酶解淀粉的吸油率增大; 当硬脂酸用量为5%时, 对亚甲基蓝的吸附率最高。结论 酶解和硬脂酸酯化处理可有效提高淀粉的吸附性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号