首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Transporting whole milk retentates of ultrafiltration to a distant large industrial Cheddar cheese making site resulted in 16 lots of Cheddar cheese from vats containing 2,546 to 16,360 kg of cheese milk. Whole milk retentates concentrated by ultrafiltration to 4.5:1 were added to cheese milks to give mixtures concentrated 1.2:1 and 1.3:1 with approximately 20 and 30% more protein and fat, respectively, than in unsupplemented control whole milks or unsupplemented commercial reference milks.Gross composition of Cheddar cheese made from commercial reference, control, and retentate-supplemented milk generally showed no major differences. Yield increased in cheese made from retentate-supplemented milk. Yield efficiency per kilogram total solids rose in retentate cheese over controls but not among commercial reference, control, and retentate lots based on per kilogram fat or total protein. Milk components were higher in wheys from retentate cheeses, but loss of components per kilogram cheese obtained generally showed lower values in whey from retentate cheese.General quality of retentate Cheddar cheese was equal to that of reference unsupplemented commercial cheese and higher than unsupplemented control Cheddar cheeses. It appears technically feasible to ultrafilter milk at one site, such as the farm, collecting station, or specialized center, and transport it to an industrial site for Cheddar cheese making.  相似文献   

2.
The textural properties of Cheddar cheese made from ultrafiltered milk were assessed. Cheddar cheeses were prepared from 1.5- and 2.0-fold concentrated milk and ripened for three months. Textural characteristics of the UF cheeses were compared to control and commercial Cheddar cheeses by sensory and instrumental measures. The texture of cheese made from UF milk differed from the control commercial Cheddar cheeses. According to the trained sensory panel, the UF cheeses were harder and more rubbery, crumbly, chewy and grainy than the control and commercial Cheddar cheeses (P <0.01). The texture profile analysis (TPA), conducted using the Instron, did not correspond to the sensory measurements nor was it successful in discriminating among the cheese samples. Lack of agreement between the sensory and instrumental tests was attributed to differences in the testing conditions and procedures of the two methods. Instrumental tests should be validated against sensory measures in order to be useful as measures of palatability. Consumer preferences for the commercial, control and UF Cheddar cheeses were significantly different (P < 0.01), the UF cheeses being less preferred in terms of flavor, texture and overall acceptability.  相似文献   

3.
The impact of concentrating whole milk by reverse osmosis prior to Cheddar cheese making was studied. Heat treated, standardized, whole milk was reduced in volume by 0, 5, 10, 15, and 20% prior to Cheddar cheese manufacture. Milk solids at various milk volume reductions were 11.98, 12.88, 13.27, 14.17, and 15.05%, respectively. Permeates contained only traces of organic matter and would not create a significant by-product handling problem for a cheese plant. Solids content of the whey from cheese making increased with increasing milk concentration. Proximate compositions of reverse osmosis cheeses were comparable to control cheeses. Fat losses decreased, and fat retained in the cheese increased with increasing milk solids concentration. Improved fat recovery in the cheese was related to the amount of mechanical homogenization of milk fat during the concentration process. Actual, composition adjusted, and theoretical cheese yields were determined. Increased retention of whey solids and improved fat recovery gave cheese yield increases of 2 to 3% above expected theoretical yields at 20% milk volume reduction. Water removal from whole milk prior to Cheddar cheese manufacture gave increased productivity and cheese yield without requiring different cheese-making equipment or manufacturing procedures.  相似文献   

4.
Reconstituted creamed retentates of ultrafiltration were converted to ripened cheese by Cheddar manufacturing principles. Initially, the fresh cheeses resembled normal Cheddar but during ripening were transformed into Gouda-Swiss types with pH rising rapidly from 5.2 to approximately 6.0.Cheese composition was affected by amount of full fat retentate in reconstituted mixtures. As total milk solids increased in reconstituted retentates, cheese moisture decreased and cheese volume rose to high yields. Cheese yield efficiency showed 1.21 to 1.32 kg cheese per kg total solids. Rennet curd of higher total solids retentates formed more rapidly than normal, and curds were harder. Whey from retentate reconstituted cheeses showed relatively low ash and fat even from cheeses made with high retentate. Soluble protein in 2-mo-old cheeses held at 10° C was lower in cheese from retentates of high solids.  相似文献   

5.
Annatto extracts prepared from Bixa orellana have traditionally been used for enhancing the colour of Cheddar cheese made in winter in Southern England or throughout the year in Scotland, and also to produce the deep red colour of certain varieties of cheese, e. g. Leicester. Double Gloucester, Red Cheddar and Cheshire. However some of the colour passes into the whey and this can lower the commercial value of powder made from the whey.
A series of Cheddar cheeses was made to compare carotenoid preparations based on β-carotene as the colouring agent with the traditional carotenoid colourant norbixin present in annatto solutions. The β-carotene preparations were found to enhance the colour of Cheddar cheese, made in Southern England from winter milk, to that of Cheddar cheese made from summer milk, or to the colour of New Zealand Cheddar, with only traces of the colourant passing into the whey.
For colouring milk to make Leicester, Double Gloucester, Red Cheddar or Cheshire cheeses, β-carotene preparations are too yellow and would need the addition of carotenoids with a more reddish colour. However, even at the highest level used, little of the β-carotene passed into the whey.  相似文献   

6.
The introduction of cheese starter developed by Vitex, Paris, France, in concentrated, freeze-dried form for direct inoculation of milk in the cheesemaking vat offers considerable advantages and the performance of some ICF starters (Inoculum pour Cuve de Fabrication) for making Cheddar is reported. Conditions regarding level of inocula and processing temperatures to establish satisfactory curd making in an acceptable making time are described and numbers of starter bacteria in the milk and in the curd at pressing and the pattern of acidity development during processing are shown to be very similar to those in standard control Cheddar cheesemaking with liquid starter cultures. No apparent lag-phase was observed in the production of acidity by these freeze-dried starters. Chemical analysis and official grading of the cheeses showed them to be of good quality.  相似文献   

7.
The effect of microfiltration (MF) on proteolysis, hardness, and flavor of Cheddar cheese during 6 mo of aging was determined. Raw skim milk was microfiltered two-fold in two cheese making trials. In trial 1, four vats of cheese were made in 1 d using unconcentrated milk (1X), 1.26X, 1.51X, and 1.82X concentration factors (CF). Casein-(CN)-to-fat ratio was constant among treatments. Proteolysis during cheese aging decreased with increasing CF due to either limitation of substrate availability for chymosin due to low moisture in the nonfat substance (MNFS), inhibition of chymosin activity by high molecular weight milk serum proteins, such as alpha2-macroglobulin, retained in the cheese or low residual chymosin in the cheese. Hardness of fresh cheese increased, and cheese flavor intensity decreased with increasing CF. In trial 2, the 1X and 1.8X CF were compared directly. Changes made in the cheese making procedure for the 1.8X CF (more chymosin and less cooking) increased the MNFS and made proteolysis during aging more comparable for the 1X and 1.8X cheeses. The significant difference in cheese hardness due to CF in trial 1 was eliminated in trial 2. In a triangle test, panelists could not differentiate between the 1X and 1.8X cheeses. Therefore, increasing chymosin and making the composition of the two cheeses more similar allowed production of aged Cheddar cheese from milk concentrated up to 1.8X by MF that was not perceived as different from aged Cheddar cheese produced without MF.  相似文献   

8.
The effect of addition of pregastric lipase enzyme on the accelerated ripening of white pickled cheese was investigated. Commercial pregastric lipase was added to milk before rennet addition at a level of 0,5, 8, 11 g per 100 L of milk and cheeses were made from this milk. Total solids, fat, total nitrogen, salt, titratable acidity, pH and free fatty acids (C2-C18:1) were analysed in the samples during 1–90 days of ripening period at 15 days intervals. Total solids, fat, total nitrogen, salt, titratable acidity, and pH of cheeses slightly increased during the ripening period. Free fatty acids and volatile free fatty acid contents in cheeses made from pregastric lipase added milk were affected by pregastric lipase and their contents were increased significantly (P<0.01) during the ripening period. Particularly, when cheese had a high level (11 g per 100 L milk) pregastric lipase, the amounts of butyric, caproic and caprylic acids in white pickled cheese were quite high. The relative amounts of volatile free fatty acids varied with storage time and pregastric lipase levels.  相似文献   

9.
The objectives were to reduce bitterness in reduced-fat Cheddar cheese made with an exopolysaccharide (EPS)-producing culture and study relationships among ultra-filtration (UF), residual chymosin activity (RCA), and cheese bitterness. In previous studies, EPS-producing cultures improved the textural, melting, and viscoelastic properties of reduced-fat Cheddar cheese. However, the EPS-positive cheese developed bitterness after 2 to 3 mo of ripening due to increased RCA. We hypothesized that the reduced amount of chymosin needed to coagulate UF milk might result in reduced RCA and bitterness in cheese. Reduced-fat Cheddar cheeses were manufactured with EPS-producing and nonproducing cultures using skim milk or UF milk (1.2×) adjusted to a casein:fat ratio of 1.35. The EPS-producing culture increased moisture and RCA in reduced-fat Cheddar cheese. Lower RCA was found in cheese made from UF milk compared with that in cheese made from control milk. Ultrafiltration at a low concentration rate (1.2×) produced EPS-positive, reduced-fat cheese with similar RCA to that in the EPS-negative cheese. Slower proteolysis was observed in UF cheeses compared with non-UF cheeses. Panelists reported that UF EPS-positive cheese was less bitter than EPS-positive cheese made from control milk. This study showed that UF at a low concentration factor (1.2×) could successfully reduce bitterness in cheese containing a high moisture level. Because this technology reduced the RCA level (per g of protein) to a level similar to that in the control cheeses, the contribution of chymosin to cheese proteolysis would be similar in both cheeses.  相似文献   

10.
11.
Normally, reduced-fat Cheddar cheese is made by removal of fat from milk prior to cheese making. Typical aged flavor may not develop when 50% reduced-fat Cheddar cheese is produced by this approach. Moreover, the texture of the reduced-fat cheeses produced by the current method may often be hard and rubbery. Previous researchers have demonstrated that aged Cheddar cheese flavor intensity resides in the water-soluble fraction. Therefore, we investigated the feasibility of fat removal after the aging of Cheddar cheese. We hypothesized the typical aged cheese flavor would remain with the cheese following fat removal. A physical process for the removal of fat from full-fat aged Cheddar cheese was developed. The efficiency of fat removal at various temperatures, gravitational forces, and for various durations of applied forces was determined. Temperature had the greatest effect on the removal of fat. Gravitational force and the duration of applied force were less important at higher temperatures. A positive linear relationship between temperature and fat removal was observed from 20 to 33 degrees C. Conditions of 30 degrees C and 23,500 x g for 5 min removed 50% of the fat. The removed fat had some aroma but little or no taste. The fatty acid composition, triglyceride molecular weight distribution, and melting profile of the fat retained in the reduced-fat cheeses were all consistent with a slight increase in the proportion of saturated fat relative to the full-fat cheeses. The process of fat removal decreased the grams of saturated fat per serving of cheese from 6.30 to 3.11 g. The flavor intensity of the reduced-fat cheeses were at least as intense as the full-fat cheeses.  相似文献   

12.
The occurrence of l(+)-lactate crystals in hard cheeses continues to be an expense to the cheese industry. Salt tolerance of the starter culture and the salt-to-moisture ratio (S:M) in cheese dictate the final pH of cheese, which influences calcium lactate crystal (CLC) formation. This research investigates these interactions on the occurrence of CLC. A commercial starter was selected based on its sensitivity to salt, less than and greater than 4.0% S:M. Cheddar cheese was made by using either whole milk (3.25% protein, 3.85% fat) or whole milk supplemented with cream and ultrafiltered milk (4.50% protein, 5.30% fat). Calculated amounts of salt were added at milling (pH 5.40 ± 0.02) to obtain cheeses with less than 3.6% and greater than 4.5% S:M. Total and soluble calcium, total lactic acid, and pH were measured and the development of CLC was monitored in cheeses. All cheeses were vacuum packaged and gas flushed with nitrogen gas and aged at 7.2°C for 15 wk. Concentration of total lactic acid in high S:M cheeses ranged from 0.73 to 0.80 g/100 g of cheese, whereas that in low S:M cheeses ranged from 1.86 to 1.97 g/100 g of cheese at the end of 15 wk of aging because of the salt sensitivity of the starter culture. Concentrated milk cheeses with low and high S:M exhibited a 30 to 28% increase in total calcium (1,242 and 1,239 mg/100 g of cheese, respectively) compared with whole milk cheeses with low and high S:M (954 and 967 mg/100 g of cheese, respectively) throughout aging. Soluble calcium was 41 to 35% greater in low S:M cheeses (low-salt whole milk cheese and low-salt concentrated milk cheese; 496 and 524 mg/100 g of cheese, respectively) compared with high S:M cheeses (high-salt whole milk cheese and high-salt concentrated milk cheese; 351 and 387 mg/100 g of cheese, respectively). Because of the lower pH of the low S:M cheeses, CLC were observed in low S:M cheeses. However, the greatest intensity of CLC was observed in gas-flushed cheeses made with milk containing increased protein concentration because of the increased content of calcium available for CLC formation. These results show that the occurrence of CLC is dependent on cheese milk concentration and pH of the cheese, which can be influenced by S:M and cheese microflora.  相似文献   

13.
Whey proteins in general and specifically β-lactoglobulin, α-lactalbumin, and immunoglobulins have been thought to decrease proteolysis in cheeses manufactured from concentrated retentates from ultrafiltration. The proteins found in whey are called whey proteins and are called milk serum proteins (SP) when they are in milk. The experiment included 3 treatments; low milk SP (0.18%), control (0.52%), and high milk SP (0.63%), and was replicated 3 times. The standardized milk for cheese making of the low milk SP treatment contained more casein as a percentage of true protein and more calcium as a percentage of crude protein, whereas the nonprotein nitrogen and total calcium content was not different from the control and high SP treatments. The nonprotein nitrogen and total calcium content of the milks did not differ because of the process used to remove the milk SP from skim milk. The low milk SP milk contained less free fatty acids (FFA) than the control and high milk SP treatment; however, no differences in FFA content of the cheeses was detected. Approximately 40 to 45% of the FFA found in the milk before cheese making was lost into the whey during cheese making. Decreasing the milk SP content of milk by 65% and increasing the content by 21% did not significantly influence general Cheddar cheese composition. Higher fat recovery and cheese yield were detected in the low milk SP treatment cheeses. There was more proteolysis in the low milk SP cheese and this may be due to the lower concentration of undenatured β-lactoglobulin, α-lactalbumin, and other high molecular weight SP retained in the cheeses made from milk with low milk SP content.  相似文献   

14.
Milk was concentrated by ultrafiltration (UF) or vacuum condensing (CM) and milks with 2 levels of protein: 4.5% (UF1 and CM1) and 6.0% (UF2 and CM2) for concentrates and a control with 3.2% protein were used for manufacturing 6 replicates of Cheddar cheese. For manufacturing pasteurized process cheese, a 1:1 blend of shredded 18- and 30-wk Cheddar cheese, butter oil, and disodium phosphate (3%) was heated and pasteurized at 74°C for 2 min with direct steam injection. The moisture content of the resulting process cheeses was 39.4 (control), 39.3 (UF1), 39.4 (UF2), 39.4 (CM1), and 40.2% (CM2). Fat and protein contents were influenced by level and method of concentration of cheese milk. Fat content was the highest in control (35.0%) and the lowest in UF2 (31.6%), whereas protein content was the lowest in control (19.6%) and the highest in UF2 (22.46%). Ash content increased with increase in level of concentration of cheese milk with no effect of method of concentration. Meltability of process cheeses decreased with increase in level of concentration and was higher in control than in the cheeses made with concentrated milk. Hardness was highest in UF cheeses (8.45 and 9.90 kg for UF1 and UF2) followed by CM cheeses (6.27 and 9.13 kg, for CM1 and CM2) and controls (3.94 kg). Apparent viscosity of molten cheese at 80°C was higher in the 6.0% protein treatments (1043 and 1208 cp, UF2 and CM2) than in 4.5% protein treatments (855 and 867 cp, UF1 and CM1) and in control (557 cp). Free oil in process cheeses was influenced by both level and method of concentration with control (14.3%) being the lowest and CM2 (18.9%) the highest. Overall flavor, body and texture, and acceptability were higher for process cheeses made with the concentrates compared with control. This study demonstrated that the application of concentrated milks (UF or CM) for Cheddar cheese making has an impact on pasteurized process cheese characteristics.  相似文献   

15.
The transformation of camel milk into soft cheese by using chymosin and yoghurt starter culture (Streptococcus thermophilus and Lactobacillus bulgaricus) was investigated. The cheese yield and sensory properties were related to the concentration of chymosin. A yield of 16.74 g/100 mL of milk was obtained with a chymosin concentration of 1.7 mL/L of milk. The cheeses obtained with concentrations ranging between 1.0 mL and 2.9 mL of chymosin/L of milk scored highly regarding their sensory properties and had an acceptable microbiological quality. This study demonstrated that cheesemaking from camel milk can be made successfully providing that the appropriate chymosin concentration is used; and that 1.7 mL of chymosin/L of milk was optimal.  相似文献   

16.
Cheddar cheese was made from milk concentrated by reverse osmosis (RO) to increase the lactose content or from whole milk. Manufacturing parameters (pH at coagulant addition, whey drainage, and milling) were altered to produce cheeses with different total Ca contents and low pH values (i.e., <5.0) during ripening. The concentration of insoluble (INSOL) Ca in cheese was measured by cheese juice method, buffering by acid-base titration, rheological properties by small amplitude oscillatory rheometry, and melting properties by UW-Melt Profiler. The INSOL Ca content as a percentage of total Ca in all cheeses rapidly decreased during the first week of aging but surprisingly did not decrease below approximately 41% even in cheeses with a very low pH (e.g., ∼4.7). Insoluble Ca content in cheese was positively correlated (r = 0.79) with cheese pH in both RO and nonRO treatments, reflecting the key role of pH and acid development in altering the extent of solubilization of INSOL Ca. The INSOL Ca content in cheese was positively correlated with the maximum loss tangent value from the rheology test and the degree of flow from the UW-Melt Profiler. When cheeses with pH <5.0 where heated in the rheometer the loss tangent values remained low (<0.5), which coincided with limited meltability of Cheddar cheeses. We believe that this lack of meltability was due to the dominant effects of reduced electrostatic repulsion between casein particles at low pH values (<5.0).  相似文献   

17.
Cheddar cheese was made from milk concentrated twofold by ultrafiltration (UF). Lowering the cooking and cheddaring temperature from 39°C to 35°C resulted in faster acid development, promoted more proteolysis, caused faster degradation of lactose, and contributed smoother body and texture to the cheese. Starter culture at 2% by weight of unconcentrated milk in combination with low cooking and cheddaring temperature reduced pH at faster rate and shortened the cheese making time by approximately 45 min, compared to cheese made using the traditional temperature (39°C). For the traditional temperature (39°C) of cooking and cheddaring, the addition of 0.2 mL/ kg rennet of unconcentrated milk produced the same rate of proteolysis in both control and cheese made from UF retentate. Composition (fat, protein, salt and moisture) and yield of the UF cheeses with modified temperature treatments were not significantly different from control.  相似文献   

18.
《Food chemistry》2002,79(4):445-452
Manufacturing procedures and compositional characteristics were studied for fresh soft white cheese (Domiati-type) made from goats' milk, using ultrafiltration (UF) and conventional processes. Yields, recovery of protein, fat, total solids and sensory characteristics of this type of cheese were also evaluated. The cheeses made by UF process was higher in pH, moisture content and ash, whereas protein and fat contents were lower compared to those cheeses made by the conventional process. An increase of 21% in cheese yields, 21–26% in protein recovery, 15–19% in fat recovery and 17–22% in total solids recovery was achieved by the UF process. Moreover, the UF process showed 83–85, 83.3, 75, 82.5 and 75% reduction in the total process time, salt, starter culture, rennet and calcium chloride used, respectively. The mean score for texture of cheeses made by UF was significantly higher than that of cheeses made by the traditional process. However, a difference in flavour and overall acceptability between UF cheeses and traditional process cheeses was not verified. The most acceptable cheeses were these made with yogurt or lactic ferment starter culture.  相似文献   

19.
Zinc-fortified Cheddar cheese containing 228 mg of zinc/kg of cheese was manufactured from milk that had 16 mg/kg food-grade zinc sulfate added. Cheeses were aged for 2 mo. Culture activity during cheese making and ripening, and compositional, chemical, texture, and sensory characteristics were compared with control cheese with no zinc sulfate added to the cheese milk. Compositional analysis included fat, protein, ash, moisture, zinc, and calcium determinations. The thiobarbituric acid (TBA) assay was conducted to determine lipid oxidation during aging. Texture was analyzed by a texture analyzer. An untrained consumer panel of 60 subjects evaluated the cheeses for hardness, off-flavors, appearance, and overall preference using a 9-point hedonic scale. Almost 100% of the zinc added to cheese milk was recovered in the zinc-fortified cheese. Zinc-fortified Cheddar cheese had 5 times more zinc compared with control cheese. Zinc-fortified cheese had higher protein and slightly higher fat and ash contents, whereas moisture was similar for both cheeses. Zinc fortification did not affect culture activity during cheese making or during the 2-mo aging period. The TBA value of control cheese was higher than that of zinc-fortified cheese at the end of ripening. Although zinc-fortified cheese was harder as determined by the texture analyzer, the untrained consumer panel did not detect differences in the sensory attributes and overall quality of the cheeses. Fortification of 16 mg/kg zinc sulfate in cheese milk is a suitable approach to fortifying Cheddar cheese without changing the quality of Cheddar cheese.  相似文献   

20.
The U.S. Food and Drug Administration Standard of Identity for Cheddar cheeses requires pasteurization of the milk, or as an alternative treatment, a minimum 60-day aging at > or =2 degrees C for cheeses made from unpasteurized milk, to reduce the number of viable pathogens that may be present to an acceptable risk. The objective of this study was to investigate the adequacy of the 60-day minimum aging to reduce the numbers of viable pathogens and evaluate milk subpasteurization heat treatment as a process to improve the safety of Cheddar cheeses made from unpasteurized milk. Cheddar cheese was made from unpasteurized milk inoculated with 10(1) to 10(5) CFU/ml of a five-strain cocktail of acid-tolerant Escherichia coli O157:H7. Samples were collected during the cheese manufacturing process. After pressing, the cheese blocks were packaged into plastic bags, vacuum sealed, and aged at 7 degrees C. After 1 week, the cheese blocks were cut into smaller-size uniform pieces and then vacuum sealed in clear plastic pouches. Samples were plated and enumerated for E. coli O157:H7. Populations of E. coli O157:H7 increased during the cheese-making operations. Population of E. coli O157:H7 in cheese aged for 60 and 120 days at 7 degrees C decreased less than 1 and 2 log, respectively. These studies confirm previous reports that show 60-day aging is inadequate to eliminate E. coli O157:H7 during cheese ripening. Subpasteurization heat-treatment runs were conducted at 148 degrees F (64.4 degrees C) for 17.5 s on milk inoculated with E. coli O157:H7 at 10(5) CFU/ml. These heat-treatment runs resulted in a 5-log E. coli O157: H7 reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号