首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The antifungal activity of Pimpinella anisum L. (anise), Pëumus boldus Mol (boldus), Hedeoma multiflora Benth (mountain thyme), Syzygium aromaticum L. (clove), and Lippia turbinate var. integrifolia (griseb) (poleo) essential oils (EOs) against Aspergillus section Flavi was evaluated in sterile maize grain under different water activity (aw) condition (0.982, 0.955, and 0.90). The effect of EOs added to maize grains on growth rate, lag phase, and aflatoxin B1 (AFB1) accumulation of Aspergillus section Flavi were evaluated at different water activity conditions. The five EOs analyzed have been shown to influence lag phase and growth rate. Their efficacy depended mainly on the essential oil concentrations and substrate water activity conditions. All EOs showed significant impact on AFB1 accumulation. This effect was closely dependent on the water activity, concentration, and incubation periods. Important reduction of AFB1 accumulation was observed in the majority of EO treatments at 11 days of incubation. Boldus, poleo, and mountain thyme EO completely inhibited AFB1 at 2000 and 3000 μg g−1. Inhibition of AFB1 accumulation was also observed when aflatoxigenic isolates grew with different concentration of EOs during 35 days.  相似文献   

2.
The aim of this study was to investigate antifungal and insecticidal activity of two microencapsulated antioxidants: 2(3)-tert-butyl-4 hydroxyanisole (BHA) and 2,6-di(tert-butyl)-p-cresol (BHT) against Aspergillus section Flavi and Oryzaephilus surinamensis (L.), a vector carrier of aflatoxigenic fungi on stored peanuts. Susceptibility of Aspergillus section Flavi, insects, and aflatoxin B1 accumulation in sterile peanut kernels conditioned at two different water activities (aw) (0.83 aw and 0.95 aw) was determined with different doses of antioxidant formulations (10, 20 and 30 mM) during 45 days. Moreover, Aspergillus section Flavi isolation frequency from live and dead insects was evaluated. The BHA formulation completely inhibited Aspergillus section Flavi development regardless of aw and doses assayed. Antifungal effect of microencapsulated BHT was highly dependent on aw, with 86–100% fungal inhibition at 20 and 30 mM, at the lowest aw (0.83 aw) and at the end of the experiment. No aflatoxin accumulation was detected in samples treated with the BHA formulation. In general, low levels of Aspergillus section Flavi were detected in dead insects. Our results show efficacy for 45 days, in addition microencapsulated BHT could be an alternative to control peanut pests in dry kernels.  相似文献   

3.
The purpose of this study was to investigate the insecticidal activity of two benzoic acids 2(3)-tert-butyl-4 hydroxyanisole (BHA) and 2,6-di(tert-butyl)-p-cresol (BHT); two phenolic acids 3-phenyl-2-propenoic acid (CA) and trans-4-hydroxy-3-methoxycinnamic acid (FA) and two essential oils of Eugenia caryophyllata (clove tree) and Thymus vulgaris (thyme) against Sitophilus zeamais, Tribolium confusum and Rhyzopertha dominica, vector carriers of aflatoxigenic fungi in stored maize. The susceptibility of insects, the frequency of isolation of Aspergillus section Flavi in insects and maize, and the analysis of aflatoxin B1 in maize were determined. BHA, BHT, BHA/BHT mixture and the natural phytochemicals AF and AF/AC mixture showed the highest insecticidal activity against S. zeamais, T. confusum and R. dominica after 120 days of incubation. The insecticidal efficacy of the volatile fraction of essential oils of clove and thyme showed less inhibition. There was no contamination of Aspergillus section Flavi in dead and live insects collected from maize treated with BHA. No aflatoxin B1 accumulation was detected in the control and treatments. The information obtained shows that these substances have the potential to control pest insect vectors of aflatoxigenic fungi in stored maize in microcosms during 120 days.  相似文献   

4.
Food‐grade antioxidants: butylated hydroxyanisole (BHA), propyl paraben (PP) and butylated hydroxytoluene (BHT) (10 and 20 mmol g?1) and all the mixtures of these chemicals were tested for inhibitory activity on the growth of and aflatoxin B1 (AFB1) accumulation by Aspergillus parasiticus and A. flavus on irradiated (7 kGy) peanut grains. Also, the influence of these treatments was evaluated in different water conditions (0.982, 0.955, 0.937aw) at 11 and 35 days of incubation at 28 °C. Water activity (aw) affected the fungal growth, no fungal development was observed at the highest stress water condition (0.937aw). Butylated hydroxyanisole at 10 mmol g?1 level and all the mixtures with PP and/or BHT were significantly effective (P = 0.05) in increasing lag phase and reducing growth rate and colony forming units per gram of peanut of both Aspergillus section Flavi strains and AFB1 accumulation. The application of BHA at concentrations of 20 mmol g?1 alone or with PP and/or BHT totally inhibited fungal growth at 11 and 35 days of incubation. The results suggest that the addition of these chemical mixtures on peanut grains at low levels has potential to impact synergically on the control of Aspergillus section Flavi. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
Recent research has showed that Aspergillus flavus and Aspergillus parasiticus are aflatoxigenic species that can become very competitive in the framework of climate change. Aflatoxins show carcinogenic, mutagenic, immunotoxic and teratogenic effects on human and animals. Effective and sustainable measures to inhibit these species and aflatoxins in food are required. Origanum vulgare and Cinnamomum zeylanicum essential oils (EOs) and their major active constituents, carvacrol and cinnamaldehyde, respectively, were assayed for inhibiting these species and aflatoxin production in maize extract medium under different environmental conditions. Doses of 10–1000 mg l?1 were assayed and the effective doses for 50 (ED50) and 90% (ED90) growth inhibition were determined. The ED50 of cinnamaldehyde, carvacrol, oregano EO, and cinnamon EO against A. flavus were in the ranges 49–52.6, 98–145, 152–505, 295–560 mg l?1 and against A. parasiticus in the ranges 46–55.5, 101–175, 260–425 and 490–675 mg l?1, respectively, depending on environmental conditions. In A. flavus treatments ED90 were in the ranges 89.7–90.5, 770–860 and 820–>1000 mg l?1 for cinnamaldehyde, carvacrol and cinnamon EO, and in A. parasiticus treatments in the ranges 89–91, 855–>1000 and 900–>1000 mg l?1, respectively. ED90 values for oregano EO against both species were >1000 mg l?1. Growth rates of both species were higher at 37 than at 25°C and at 0.99 than at 0.96 aw. Aflatoxin production was higher at 25 than at 37°C. Stimulation of aflatoxin production was observed at low doses except for cinnamaldehyde treatments. The effectiveness of EOs and their main constituents to inhibit fungal growth and aflatoxin production in contact assays was lower than in vapour phase assays using bioactive EVOH-EO films previously reported.  相似文献   

6.
The effect of essential oils, ethanolic and aqueous extract of 41 vegetable species on Aspergillus section Flavi growth was evaluated. The in vitro screen was a two-stage process. A wide-spectrum initial screen which identified promising antifungal plant extracts was carried out first. After that, identified extracts were studied in more detail by in vitro assays. A total of 96 plant extracts were screened. Essential oils were found to be the most effective extract controlling aflatoxigenic strains. Clove, mountain thyme, poleo and eucalyptus essential oils were selected to study their antifungal effect. Studies on percentage of germination, germ-tube elongation rate, growth rate, and aflatoxin B1 accumulation were carried out. Clove, mountain thyme and poleo essential oils showed the most antifungal effect under all growth parameters analyzed as well as aflatoxin B1 accumulation. Our results suggest that mountain thyme and poleo, which are native vegetal species of Argentina, and clove essential oils could be used alone or in conjunction with other substances to control the presence of aflatoxigenic fungi in stored maize.  相似文献   

7.
Relatively few data exist regarding concentrations of aflatoxins and their causative organisms in dusts within occupational environments. Here, we examined Aspergillus Section Flavi populations and aflatoxin levels in 54 samples of dusts generated by agricultural processing facilities as possible indicators of aflatoxin exposure in the Philippines. The average incidence of Aspergillus Section Flavi expressed as a percentage of total mould populations in rice dust, corn dust, feed dust and copra dust were 8, 4, 31 and 10%, respectively. Predominant aflatoxigenic fungi isolated were Aspergillus flavus and A. parasiticus with ratios of 31:1, 40:5, 16:4 and 1:1 in rice dust, corn dust, feed dust and copra dust, respectively. Aflatoxins produced by selected isolates in in vitro rice culture ranged from 100 µg kg?1 to 100.5 mg kg?1. Toxigenicity of isolates based on the average aflatoxin concentrations produced by positive isolates were in the order of copra dust > corn dust > rice dust > feed dust. Average natural concentrations of aflatoxins in rice dust, corn dust, feed dust, and copra dust were 25, 6, 15 and 10 µg kg?1, respectively. Estimates of the amount of inhaled aflatoxins by workers in an 8‐h work shift ranged from 0.06 to 114 ng, the average of which is higher than the amount of aflatoxins ingested by Filipinos due to the consumption of polished rice. The presence of highly toxigenic Aspergillus Section Flavi and aflatoxins in agricultural dust is a critical health risk for workers, considering the frequency of exposure and the possibility of inhalation and subsequent absorption of aflatoxins in the respiratory tract. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
The Brazil nut (Bertholletia excelsa) is an economically important product to the Brazilian Amazon. Currently, its marketing is being affected by the high incidence of aflatoxins (AF) produced by potentially aflatoxigenic fungi associated with its seeds. In this context, the purpose of this study was to determine which part of the nut contributes to contamination by aflatoxins and to identify the mycobiota in Brazil nut samples. Unshelled and shelled nuts were analyzed by measuring the total count of filamentous fungi (Aspergillus sections Flavi, Nigri and Circumdati) in sanitised and non-sanitised treatments. The isolates identified as Aspergillus section Flavi, the major producers of AF, were plated for determination of their aflatoxigenic potential. To perform the AF analysis, samples of Brazil nuts were treated separately. The AF from the shell and kernel were extracted by chloroform and analysed by the HPLC-FD system in isocratic mode. The Aspergillus section Flavi count was 21.67% lower. The production of AF by the isolated fungi was 30% for sanitised and 23.8% for non-sanitised samples. The concentrations obtained of AFB1 and AFG1 were higher than those of AFB2 and AFG2. The AFB1 concentrations of shelled nuts and shell samples were 35.0 and 1.78 μg/kg, respectively. AFB2 and AFG2 were detected only in shelled nut samples. The HPLC-FD analysis presented limits of detection (LOD) and quantification (LOQ) of 0.2 and 0.4 μg/kg, respectively.  相似文献   

9.
Traditional cheeses may be contaminated by aflatoxin-producing Aspergillus flavus during the ripening process, which has not been sufficiently taken into account. The objectives of this study were to evaluate the influence of water activity (aw), pH, and temperature on the lag phases, growth, and aflatoxin production of 3 A. flavus strains (CQ7, CQ8, and CG103) on a cheese-based medium. The results showed that the behavior of A. flavus strains was influenced by pH, aw, and temperature conditions. The CQ7 strain showed the maximum growth at pH 5.5, 0.99 aw, and 25°C, whereas for CQ8 and CQ103 strains, no differences were obtained at pH 5.5 and 6.0. In general, low pH, aw, and temperature values increased the latency times and decreased the growth rate and colony diameter, although aw and temperature were the most limiting factors. Maximum aflatoxin production on the cheese-based medium occurred at pH 5.0, 0.95 aw, and 25 or 30°C, depending on the strain. This study shows the effect of pH, aw, and temperature factors on growth and aflatoxin production of 3 aflatoxigenic A. flavus strains on a cheese-based medium. The findings may help to design control strategies during the cheesemaking process and storage, to prevent and avoid aflatoxin contamination by aflatoxigenic molds.  相似文献   

10.
In Algeria, little information is available on the population structure of Aspergillus section Flavi in raw materials and resultant animal feeds. A total of 172 isolates belonging to Aspergillus section Flavi were recovered from 57 animal feeds and identified on the basis of macro and micro-morphological characters, mycotoxin production and genetic relatedness. For the molecular analysis, sequencing of the calmodulin gene (CaM) and the internal transcribed spacer (ITS) regions were performed for representative isolates. Four distinct morphotypes were distinguished: Aspergillus flavus (78.5%), Aspergillus tamarii (19.2%), Aspergillus parasiticus (1.7%), and Aspergillus alliaceus (0.6%). All A. flavus isolates were of the L type and no correlation between sclerotia production and aflatoxigenicity was observed. Our results showed that 68% of the A. flavus strains produced aflatoxins B (AFB), and 72.7% were cyclopiazonic acid (CPA) producers. The three isolates of A. parasiticus were able to produce AFB and aflatoxins G but not CPA whereas, all the strains of A. tamarii produced only CPA. The obtained results revealed the presence of different species of Aspergillus section Flavi, among which were aflatoxin producers. This study provides evidence useful for considerations in aflatoxin control strategies.  相似文献   

11.
The result of the present investigation explores the efficacy of chemically characterised essential oils (EOs) of Coleus aromaticus, Hyptis suaveolens and Ageratum conyzoides as antifungal and antiaflatoxigenic agent against some storage fungi and the toxigenic strain of Aspergillus flavus (Saktiman 3NSt). Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of these EOs were also determined against the toxigenic strain of A. flavus (Saktiman 3NSt). The EO from C. aromaticus was found to be most effective exhibiting MIC and MFC at 0.1μL mL?1. The EOs also completely checked aflatoxin B1 synthesis in concentration‐dependent manner. In addition, fumigation of stored wheat samples with EOs exhibited remarkable protection (>80%) from fungal infestation showing their efficacy during in vivo storage conditions. Based on the results of the present investigation, the EOs of C. aromaticus, H. suaveolens and A. conyzoides may be recommended as novel plant‐based antifungal and aflatoxin B1 suppressor over the synthetic preservatives.  相似文献   

12.
Feed destined for animal production as brewer's grains can be contaminated by Aspergillus section Flavi species. Lactic acid bacteria (LAB) play a defining role in the preservation and microbial safety of fermented foods. The objective of this study was to study the incidence of lactic acid bacteria, Aspergillus section Flavi and AFB1 in brewer's grains and the preliminary antifungal activity of native LAB in vitro. LAB and aflatoxigenic Aspergillus were found in high counts in brewer's grains used as raw material for pig feedstuff. However, AFB1 had low AFB1 natural incidence in samples. In vitro antifungal activity of LAB isolated showed that all bacteria tested inhibited two Aspergillus flavus strains assayed. The high incidence of LAB could be inhibiting the AFB1 production in by-products obtained from the beer industry. LAB strains with excellent antimicrobial activity were also found in this substrate.  相似文献   

13.
Thirty-five samples of poultry feeds and corresponding raw materials (maize, soybean and meat meal) from a processing plant were analyzed to evaluate the distribution and toxigenicity of Aspergillus section Flavi isolates. Mycological analysis of the samples indicated the presence of five fungal genera (Aspergillus, Penicillium, Fusarium, Cladosporium, and Eurotium). Aspergillus flavus was the predominant species being present in 48.5% of the analyzed samples. Ninety-one isolates belonging to Aspergillus section Flavi were isolated; ninety were identified as A. flavus and only one as A. parasiticus. Fifty-seven isolates were capable of producing sclerotia, 41 were identified as L-type strains and 16 as type S. Fifty-seven percent of the isolates produced AFB1 levels ranging from 0.05 μg/kg to 27.7 μg/kg whereas 86.8% produced CPA from 1.5 μg/kg to 137.8 μg/kg. L-strains produced from 0.05 to 14.8 μg/kg of aflatoxin and type S produced levels from 0.05 to 1.65 μg/kg. No significant differences in CPA production among S- and L-strains were observed. Sclerotial isolates produced AFB1 levels ranging between 0.05 and 27.7 μg/kg and CPA levels from 3.8 to 47.3 μg/kg. More than half of the A. flavus isolates were able to produce AFB and CPA simultaneously. Twenty percent of the 35 samples were contaminated with aflatoxin B1 whereas 34.3% were contaminated with CPA. The high rate of CPA producing isolates represents a potential risk of contamination with this toxin in poultry feeds.  相似文献   

14.
The Brazil nut (Bertholletia excelsa) is an economically important product to the Brazilian Amazon. Currently, its marketing is being affected by the high incidence of aflatoxins (AF) produced by potentially aflatoxigenic fungi associated with its seeds. In this context, the purpose of this study was to determine which part of the nut contributes to contamination by aflatoxins and to identify the mycobiota in Brazil nut samples. Unshelled and shelled nuts were analyzed by measuring the total count of filamentous fungi (Aspergillus sections Flavi, Nigri and Circumdati) in sanitised and non-sanitised treatments. The isolates identified as Aspergillus section Flavi, the major producers of AF, were plated for determination of their aflatoxigenic potential. To perform the AF analysis, samples of Brazil nuts were treated separately. The AF from the shell and kernel were extracted by chloroform and analysed by the HPLC-FD system in isocratic mode. The Aspergillus section Flavi count was 21.67% lower. The production of AF by the isolated fungi was 30% for sanitised and 23.8% for non-sanitised samples. The concentrations obtained of AFB1 and AFG1 were higher than those of AFB2 and AFG2. The AFB1 concentrations of shelled nuts and shell samples were 35.0 and 1.78???g/kg, respectively. AFB2 and AFG2 were detected only in shelled nut samples. The HPLC-FD analysis presented limits of detection (LOD) and quantification (LOQ) of 0.2 and 0.4???g/kg, respectively.  相似文献   

15.
The effect of γ‐irradiation and maize lipids on aflatoxin B1 production by Aspergillus flavus artificially inoculated into sterilized maize at reduced water activity (aw 0.84) was investigated. By increasing the irradiation doses the total viable population of A. flavus decreased and the fungus was completely inhibited at 3.0 kGy. The amounts of aflatoxin B1 were enhanced at irradiation dose levels 1.0 and 1.5 kGy in both full‐fat maize (FM) and defatted maize (DM) media and no aflatoxin B1 production at 3.0 kGy γ‐irradiation over 45 days of storage was observed. The level in free lipids of FM decreased gradually, whereas free fatty acid values and fungal lipase activity increased markedly by increasing the storage periods. The free fatty acid values decreased by increasing the irradiation dose levels and there was a significant enhancement of fungal lipase activity at doses of 1.0 and 1.50 kGy. The ability of A. flavus to grow at aw 0.84 and produce aflatoxin B1 is related to the lipid composition of maize. The enhancement of aflatoxin B1 at low doses was correlated to the enhancement of fungal lipase activity.  相似文献   

16.
Fusarium verticillioides and F proliferatum isolates were inoculated in mixed cultures with Aspergillus parasiticus on irradiated maize grain at two different inoculum concentrations (2 × 105 and 2 × 102 conidia g?1 dry maize). The treatments were 0.93–0.98 water activity (aw) and 15 and 25 °C for 28 days. A complex relationship was found between aw, temperature, inoculum concentration and the interactions which took place between fumonisin and aflatoxin producers. In general, A parasiticus reduced F verticillioides and F proliferatum populations (by 6–36%) but did not affect fumonisin B1 production by these species. In contrast, while the Fusarium species were not able to decrease A parasiticus populations, they significantly reduced aflatoxin B1 accumulation (by 30–93%). © 2001 Society of Chemical Industry  相似文献   

17.
Kim DM  Chung SH  Chun HS 《Food microbiology》2011,28(7):1402-1408
Aflatoxins are toxic secondary metabolites produced commonly by Aspergillus flavus and Aspergillus parasiticus. In this study, the possibility of using multiplex PCR was investigated to speed up and specify the detection of aflatoxigenic Aspergillus species in meju, a traditional Korean fermented soybean food starter. Two different sets of three primers were designed specifically for the omtB, ver-1, aflR, and omtA genes present in the aflatoxin biosynthesis cluster. The optimized multiplex PCR showed that only aflatoxigenic Aspergillus species gave three band patterns in both primer sets. The detection limits were determined as 125 pg/μl for genomic DNA from aflatoxigenic A. parasiticus KCCM 35078, and 105 spores/g of meju sample for DNA extracted directly from meju. A total of 65 Aspergillus isolates from meju were tested for the presence of aflatoxigenic fungi by the application of multiplex PCR, and were analyzed by TLC and HPLC for the aflatoxin production in the culture filtrates. Results showed a good correlation between the presence of the aflatoxin biosynthesis genes analyzed by multiplex PCR and aflatoxin production by TLC and HPLC. This suggests that this multiplex PCR method may provide an accurate and specific detection of aflatoxigenic Aspergillus species in fermented soybean foods.  相似文献   

18.
BACKGROUND: The influence of a mixture of butylated hydroxyanisole (BHA) and propyl paraben (PP) (each at a concentration of 20 mmol L?1) on mycoflora and Aspergillus section Flavi populations in stored maize grain was evaluated. A survey of 120 maize samples was carried out from June to November 2005. RESULTS: The predominant populations in non‐treated (control) maize between the first and sixth sampling periods were Aspergillus section Flavi and Penicillium. Aspergillus flavus was the fungus most frequently isolated from both control and antioxidant‐treated kernels. All samples of control and antioxidant‐treated maize kernels were negative for aflatoxins during the 6 month storage period. Aspergillus flavus and A. parasiticus strains showed a variable ability to produce aflatoxins. The contribution of the strains to silo community toxigenicity was higher for A. flavus L (large) and S (small) strains in the fourth sampling period. CONCLUSION: Antioxidant treatment negatively affected natural maize mycoflora and Aspergillus section Flavi populations between the second and sixth months of storage. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
Mycotoxins are toxic, low molecular weight compounds produced by fungi. Among them, aflatoxins are the most carcinogenic and they mainly impact on rural communities of developing countries. The present study supplies data on mycobiota and aflatoxin contamination in the most common food products consumed in Haiti. The study concerns analyses performed on 49 samples of meals and seeds collected in South Haiti and tested for fungal occurrence and aflatoxin content by HPLC-DAD technique. The results revealed that three main fungal genera affected Haitian food products: Aspergillus spp. (Section Flavi and Nigri), followed by Penicillium spp. and Fusarium spp. Aflatoxin was present in more than half of the samples of maize (Zea mays L.) kernels (55%), maize meal (57%) and moringa (Moringa oleifera Lam.) seeds (64%), and in 25% of peanut (Arachis hypogaea L.) samples. The tested food products were mostly contaminated by aflatoxin B1 (AFB1) followed by aflatoxin B2 (AFB2), while no aflatoxins type G were detected. The total concentration of aflatoxins in the positive samples was 228 μg/kg on average, i.e., fifty-seven and eleven times higher than the maximum levels allowed in Europe and USA, respectively. Both the presence of aflatoxigenic fungi and aflatoxin contamination in maize kernels seemed to be related to agricultural practices, such as weed control, irrigation and growing cycle length. These findings suggest that the Haitian population is strongly exposed to aflatoxin risk. This risk could be reduced by exploiting simple and accessible farming strategies for minimizing mycotoxin contamination, at least for maize.  相似文献   

20.
The study presents fungal and aflatoxin contamination of some dry fruits and Ocimum basilicum essential oil (EO) as a plant‐based preservative. During mycoflora analysis, 2045 fungal isolates were recorded from dry fruits and 40% isolates of Aspergillus flavus were toxigenic in nature. The EO of O. basilicum exhibited strong fungitoxicity against toxigenic strain of A. flavus. Its minimum inhibitory concentration (MIC) was recorded at 1.0 μL ml?1, and it completely inhibited aflatoxin B1 production at 0.5 μL ml?1. The oil exhibited broad fungitoxic spectrum and considerably reduced A. flavus isolates from dry fruits when used as fumigant in closed storage containers at 1.0 μL ml?1. The chemical profile of the EO was standardised through GC–MS analysis. Based on antifungal potency, antiaflatoxigenicity and efficacy as fumigant during storage conditions, O. basilicum EO may be recommended as a botanical preservative for enhancing the shelf life of dry fruits and edible products during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号