首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Milk was fermented with the exopolysaccharide-producing (EPS+) strains Lactococcus lactis subsp. cremoris, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and with the non-EPS-producing strain (EPS) L. lactis subsp. cremoris. The kinetics of gelation and the behaviour of set fermented milk during and after shearing were studied using rheometry and confocal scanning laser microscopy. The time of gelation of milk depended on the kinetics of acidification of strains whereas the pH of gelation depended mostly on the presence of exopolysaccharides (EPS). In set fermented milk with EPS+ strains, bacteria were observed in protein-free areas likely filled with EPS. Phase-separated EPS and caseins contributed to induce the gelation of fermented milk at pH 5.6. The high resistance to shearing of milk fermented with the EPS+ strain L. lactis subsp. cremoris might be due to the negative charge of the exopolysaccharide allowing an attractive interaction with caseins.  相似文献   

2.
The purpose of this study was to identify species of lactic acid bacteria in Taiwanese ropy fermented milk and to study their microbial dynamics during the fermentation process through conventional microbiological cultivation and PCR-denaturing gradient gel electrophoresis. Identification results indicated that Lactococcus lactis ssp. cremoris and Leuconostoc mesenteroides ssp. mesenteroides were the major lactic acid bacteria in Taiwanese ropy fermented milk. Interestingly, 3 groups were identified as Lc. lactis ssp. cremoris using 16S rDNA sequencing, but they showed different denaturing gradient gel electrophoresis patterns and assimilation of carbohydrates. In addition, the microbial dynamics study in different fermentation stages demonstrated that Lc. lactis ssp. cremoris was the most dominant bacterial species in the samples, followed by Leu. mesenteroides ssp. mesenteroides with no differences among the fermentation stages. Finally, the microbial distribution profiles showed that the microbial ecology was different in bovine, caprine, and reconstituted milk, which might further affect the characteristics of the product.  相似文献   

3.
Abstract: The purpose of this study was to manufacture new functional low‐fat cheeses using Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris strains isolated from TRFM. After 28 d of ripening and storage, the viable populations of lactic acid bacteria (LAB) in the low‐fat cheeses made with L. lactis subsp. cremoris TL1 (TL1), L. lactis subsp. cremoris TL4 (TL4), and TRFM still maintained above 108 CFU/g. The low‐fat cheeses made with TL1 and TRFM showed higher moisture contents than the cheeses made with TL4, full‐fat, and low‐fat cheese controls. The low‐fat cheeses made with TL1 and TL4 had higher customer preferential scores similar to full‐fat cheese control in the sensory evaluation. Additionally, the low‐fat cheeses fermented with TL1, TL4, and TRFM for 4 h had higher 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) free radical‐scavenging and ferrous ion‐chelating abilities than the cheeses fermented with the starters for 8 h, full‐fat, and low‐fat cheese controls. A better angiotensin‐converting enzyme (ACE) inhibition activity was also observed in the low‐fat cheeses made with TL1, TL4, and TRFM than that in the full‐fat and low‐fat cheese controls during ripening and storage period. Practical Application: As health‐conscious consumers continue to seek low‐fat alternatives in their diets, there remain strong interests for the dairy industry to develop low‐fat cheeses to meet the demands. This study clearly demonstrated that the low‐fat cheeses fermented with TL1 for 4 h showed a better overall acceptability and possessed antioxidative abilities and ACE inhibitory activities than other cheeses tested in this study. By improving its flavor and investigating the possible mechanisms of its functionalities in the future, this low‐fat cheese might possibly be commercialized and give a positive impact on cheese consumption in the future.  相似文献   

4.
《International Dairy Journal》2005,15(10):1044-1055
The objective of the present study was to develop a methodology for direct observation of capsular and ropy strains and their exopolysaccharides (EPS) in a Cheddar cheese matrix. Cheddar cheeses with 50% reduced fat were made from milk containing 1.7% fat using mixed starter culture containing either capsule-forming Lactococcus lactis subsp. cremoris (SMQ-461) or ropy L. lactis subsp. cremoris (JRF-1) strains. Control cheese was made using the EPS-negative L. lactis subsp. cremoris (RBL132) strain. Following cheese pressing, samples were taken from each cheese treatment and examined by transmission electron microscopy (TEM). Samples were divided into two series: the first was prepared following the conventional methods (involving fixation, post fixation, dehydration and embedding in resin) and the second with added ruthenium red at 0.15% (w/v) during the fixation, post fixation and washing procedures. Gold-labeled lectin was also used for the visualization and localization of EPS in cheese matrix. Electron micrographs showed that ruthenium red makes it possible to visualize and enhance the resolution of the EPS in a Cheddar matrix compared with the conventional method. The EPS layer of the capsular strain appeared regular and evenly distributed around the cell, whereas the cell-associated EPS layer produced by the ropy strain was longer, more irregular (having a filamentous structure) and unevenly surrounded the cell. EPS released from the ropy strain appeared to form a network-like structure located principally in whey pockets and appeared to interact with the casein matrix and fat globule membrane. Labeling EPS by lectin conjugated to colloidal gold could only be performed with conventional preparation of cheese samples and appeared to react only with the cell surface rather than with liberated EPS. Besides their ability to bind water and increase cheese yield, capsular and ropy strains used in this study appear to have potential autolytic characteristics, which may have an impact on cheese proteolysis, texture and flavor quality.  相似文献   

5.
The characteristic consistency of Nordic ropy sour milk was studied. Skim milk, reconstituted from non-fat dry milk, was fermented at 20 degrees C for 24 h by addition of 5% (v/v) inoculum of slime-producing (ropy) strain of Lactococcus lactis ssp. cremoris SBT 0495, isolated from Finnish ropy sour milk 'viili' starter culture, and its non-ropy variant SBT 1275. Measurements of texture showed that milk gel prepared by the ropy strain exhibited remarkably increased adhesiveness as compared to that by the non-ropy variant. Milk gel prepared by the ropy strain also exhibited decreased syneresis (wheying-off) as compared to that by the non-ropy variant. Scanning electron micrographs of milk gel prepared by the ropy strain showed that slime was in the form of a network attaching the bacterial cells to the protein matrix. A thick network of slime attached the casein micelle clusters to each other to make casein conglomerates, which is likely to result in the characteristic consistency of 'viili'.  相似文献   

6.
This work reports the microbial characterisation of a farmhouse natural fermented milk (NFM) with good sensorial properties produced in Spain. Culturing and denaturing gradient gel electrophoresis (DGGE) analyses showed thatLactococcus lactissubsp.lactis and L. lactissubsp.cremoris(approximate levels of 109 cfu/mL) were dominant in this NFM, whileLactobacillus plantarumappeared at a lower level (106–107 cfu/mL). Repetitive extragenic palindromic (REP)‐PCR typing of the isolates identified single strains each ofLc. lactissubsp.lactis, Lc. lactissubsp.cremorisandLb. plantarum. These three strains formed a stable microbial association which has been maintained for at least some decades.  相似文献   

7.
Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out.  相似文献   

8.
The probiotic potential of newly isolated lactic acid bacteria from cow’s milk was analysed and the efficacy of the selected isolates to produce folic acid was determined by microbiological assay. Two isolates, CM 22 and CM 28 were selected for folate production in skim milk medium and the net folate yield was 12.5 ng and 14.2 ng/mL respectively. The two isolates (CM 22 and CM 28) showed more than 98% similarity to Lactococcus subsp. cremoris and Lactococcus lactis subsp. lactis respectively by 16S rRNA sequencing.  相似文献   

9.
The effects of reconstituted skim milk, and the same fermented by Lactobacillus acidophilus, were tested in rats. Rats were fed a stock diet and drinking water containing one of three milk treatments: (1) no supplementary milk; (2) 10% milk; or (3) 10% milk fermented by L. acidophilus. After 4 wk, rats receiving the fermented milk had lower (P < 0.05) serum cholesterol levels (65 mg/dl) than did the water-fed (78 mg/dl) or milk-fed (79 mg/dl) rats. Weight gain, feed intake, liver lipid contents and fecal lactobacilli counts were not different among treatment groups. Data indicate that factors influencing serum cholesterol levels were produced during fermentation of the milk.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号