首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
响应面法优化虫草液态发酵培养基   总被引:1,自引:2,他引:1  
采用响应面法(RSM)对冬虫夏草菌(Cordyceps sinensis)液体发酵培养基成分麦芽糖、葡萄糖、蛋白胨进行优化,采用多元二次回归方程拟合三种因素与核苷类物质含量间的函数关系。  相似文献   

2.
以(NH4)2SO4作为氮源进行单因素试验,通过改变(NH4)2SO4的含量以构成不同的碳氮比,以菌丝干重为指标,确定最佳碳氮比,得出其最佳碳氮比在3.0到4.0之间。以玉米粉、葡萄糖、黄豆粉、酵母膏添加剂为考察因素进行L,(3。)正交试验,确定最佳培养基配方,得到其最佳培养基配比为:玉米粉3.0%,葡萄糖1.5%,黄豆粉1.O%,酵母膏0.8%,菌丝体的最大生长量平均在1.29g/100ml。以薄层色谱扫描法(TLCS)~定泰山虫草菌丝体与天然冬虫夏草中腺苷、尿苷、次黄嘌呤核苷、次黄嘌呤成分的含量,结果表明:泰山虫草菌丝体核苷类有效成分及次黄嘌呤含量明显高于冬虫夏草。其腺苷、尿苷、次黄嘌呤核苷、次黄嘌呤的含量分别是冬虫夏草的8.25、3.76、11.8和1.55倍。两种虫草中核苷类成分的含量均表现为尿苷〉次黄嘌呤核苷〉腺苷〉次黄嘌呤。  相似文献   

3.
研究建立了高效液相色谱法测定核苷类物质含量及比较提取工艺对核苷类物质含量的影响。采用Agilent XDB C_(18)色谱柱(4.6 mm×150 mm),流动相A相为甲醇,流动相B相为纯水,梯度洗脱,流速为0.8 mL/min, DAD检测波长为260 nm,柱温为35℃。检测方法显示:9种核苷类物质的检测线性范围为0.02~500 mg/L;检出限(S/N=3)在0.004~0.049 mg/kg之间;加标回收率(N=6)在87.30%~105.29%之间,检测方法灵敏有效。检测结果表明,不同提取工艺得到的马铃薯中叶尿嘧啶、胞苷、次黄嘌呤、尿苷、腺嘌呤、次黄嘌呤核苷、鸟苷、胸苷和腺苷9种马铃薯核苷类物质的总含量以仿生法萃取最高,仿生法萃取过程没有加热处理,最大程度地保留了马铃薯核苷类物质;结果表明,从马铃薯核苷类物质的含量及物质特性保留的角度考虑,选择马铃薯的提取工艺以仿生法萃取为宜。  相似文献   

4.
主要通过改变蛹虫草固体栽培基质(大米、小米、高粱米、玉米、小麦)和添加不同的碳源(葡萄糖、麦芽糖、半乳糖、蔗糖、乳糖、甘露醇),探索这2个因素对蛹虫草子实体中腺苷、虫草素、SOD酶、多糖等的影响。综合分析如上有效成分含量值,据此选取葡萄糖为最佳碳源(腺苷含量为169.5 mg/100 g,虫草素含量为149.0 mg/100 g,SOD活力值为5568.0 U/g,粗多糖含量为2.791 g/100 g),玉米为最佳培养基质(腺苷含量为248.5 mg/100 g,虫草素含量为221.1 mg/100 g,SOD活力值为2325.0 U/g,粗多糖含量为2.774 g/100 g)组合,为蛹虫草保健品中多种有效成分含量的提高提供了理论依据。  相似文献   

5.
从甜酒曲中分离筛选得到1株解淀粉芽孢杆菌菌株GSBa-1,为了提高该菌株液态发酵产凝乳酶的能力,采用单因素实验和响应面法优化其产酶培养基组成。通过单因素实验分析了碳源、氮源、金属盐、磷源对菌株GSBa-1产凝乳酶的影响,并采用响应面法对产酶培养基中麦芽糖、蛋白胨和酵母浸粉含量3个主要因素的优化组合进行了定量研究,确定解淀粉芽孢杆菌GSBa-1产凝乳酶的优化培养基组成为:麦芽糖1.93 g/L、蛋白胨10.89 g/L、酵母浸粉2.15 g/L。在此优化培养基培养条件下,该菌株产凝乳酶活力可达(562.57±7.67)Su/m L,接近理论预测值537.10 Su/m L,且平均误差为4.53%。优化后解淀粉芽孢杆菌GSBa-1产凝乳酶活力比基础培养基提高了1.88倍。  相似文献   

6.
采用响应面法(RSM)对丙酮酸发酵培养基成分葡萄糖、硫酸铵、蛋白胨进行优化,采用多元二次回归方程拟合3种因素与丙酮酸含量间的函数关系,并得到了最佳条件。在优化培养条件下,发酵液中丙酮酸的浓度由35.4g/L提高到41.57g/L,在5L罐的最佳浓度下丙酮酸产量71.23g/L比原产量65.76g/L提高8.3%。  相似文献   

7.
李宁  李晓清  贾英民 《中国酿造》2012,31(3):116-119
采用响应面法对溶杆菌UCo1产溶菌酶的培养基进行了优化。首先对溶杆菌UCo1产溶菌酶的发酵培养基进行了单因素试验,确定了影响产酶的3个显著因素,即碳源麦芽糖,氮源大豆蛋白胨和表面活性剂Tween-20。采用Box-Behnken响应面法对溶菌酶的发酵培养基组成进行了优化,确定了最佳条件。结果表明,麦芽糖,大豆蛋白胨和Tween-20 3因素的最佳浓度分别为1.725%,3.25%,0.048%时,溶菌酶酶活达到6973.5U/mL,与模型所得到的最大预测值6990.99U/mL基本吻合,且较优化前的酶活力(6230.4U/mL)提高了11.93%。  相似文献   

8.
建立高效液相色谱法测定核苷类物质含量并比较提取工艺对核苷类物质含量的影响。采用Reprosil-Pur Basic C18色谱柱(4.6 mm×150 mm),流动相A相为甲醇;流动相B相为纯水,梯度洗脱,流速1.0 m L/min,DAD检测波长260 nm;柱温40℃。检测方法显示,9种核苷类物质的检测线性范围为0.02~200 mg/L;检出限(S/N=3)在0.003~0.02mg/kg;加标回收率(N=6)在86.45%~106.88%、检测方法灵敏有效。检测结果表明,不同提取工艺得到的艾叶中叶尿嘧啶、胞苷、次黄嘌呤、尿苷、腺嘌呤、次黄嘌呤核苷、鸟苷、胸苷和腺苷9种艾叶核苷类物质总含量以亚临界萃取最高,亚临界萃取过程没有加热处理,最大程度地保留艾叶核苷类物质;结果表明,从艾叶核苷类物质含量及物质特性保留的角度考虑,选择艾叶的提取工艺以亚临界萃取为宜。  相似文献   

9.
建立高效液相色谱法测定核苷类物质,探究含量并比较提取工艺对核苷类物质含量的影响。采用Waters Symmetry C18色谱柱(4.6 mm×150 mm),流动相A相为甲醇;流动相B相为纯水,梯度洗脱,流速1.0 mL/min, VWD检测波长260 nm;柱温37℃。检测方法显示, 9种核苷类物质的检测线性范围为0.05~100 mg/L;检出限(S/N=3)为0.002~0.018 mg/kg;在加标浓度分别为1.0, 5.0, 10.0和20.0 mg/g条件下,加标回收率(N=6)为87.12%~104.22%,检测方法灵敏有效。检测结果表明,不同提取工艺得到的商陆中叶尿嘧啶、胞苷、次黄嘌呤、尿苷、腺嘌呤、次黄嘌呤核苷、鸟苷、胸苷和腺苷9种商陆核苷类物质的总含量以超临界萃取最高,超临界萃取过程没有加热处理,最大程度地保留了商陆核苷类物质。结果表明,从商陆核苷类物质的含量及物质特性保留的角度考虑,选择商陆的提取工艺以超临界萃取为宜。  相似文献   

10.
研究建立了高效液相色谱法测定核苷类物质含量及比较提取工艺对核苷类物质含量的影响。试验采用Phenomenex Luna C18色谱柱(4.6 mm×150 mm),流动相A相为甲醇,流动相B相为纯水,梯度洗脱,流速为0.8 mL/min,DAD检测波长为262 nm,柱温为30℃。检测方法显示:9种核苷类物质的检测线性范围为0.02~250 mg/L;检出限(S/N=3)在0.003~0.035 mg/kg之间;加标回收率(N=6)在85.38%~102.45%之间,检测方法灵敏有效。检测结果表明,不同提取工艺得到的接骨草中叶尿嘧啶、胞苷、次黄嘌呤、尿苷、腺嘌呤、次黄嘌呤核苷、鸟苷、胸苷和腺苷9种接骨草核苷类物质的总含量以亚临界萃取最高,亚临界萃取过程没有加热处理,最大程度地保留了接骨草核苷类物质;结果表明,从接骨草核苷类物质的含量及物质特性保留的角度考虑,选择接骨草的提取工艺以亚临界萃取为宜。  相似文献   

11.
屎肠球菌TRS5在37℃、p H 6.5的MRS培养基中经过24 h的培养后,其细菌素生成量达到最大。培养基中添加胰蛋白胨或葡萄糖有利于促进TRS5细菌素的生成,而添加麦芽糖、乳糖或甘露糖(20 g/L)后细菌素活性减少50%。外源添加5 g/L的甘油和吐温-80会抑制TRS5细菌素的产生,而添加K_2HPO_4或VB_1、VB_2、VB_6、VC则对细菌素的生成没有影响。药敏实验证实屎肠球菌TRS5对红霉素、氯霉素、万古霉素、替考拉宁、四环素、青霉素敏感。聚合酶链式反应及测序结果证实屎肠球菌TRS5含有肠球菌素enterocin P和类L50的结构基因。  相似文献   

12.
采用废弃牛胎盘下脚料为氮源制备新型培养基。并采用Plackett-Burman法、最陡爬坡试验和响应面试验(Box-Behnken设计法)相结合的方法对大肠杆菌培养基进行优化。结果表明:牛胎盘下脚料经水解后,替代LB培养基中的酵母浸粉,显示出较高的生长水平。优化后的新型培养基(NTP)组成为:葡萄糖2.8 g/L,NaCl 11 g/L,胰蛋白胨10.3 g/L,牛胎盘水解物16.7 g/L,pH 7.85,最终得到活菌数量较高的培养基配方。  相似文献   

13.
通过Plackett-Burman试验,得出糖蜜、玉米浆和豆饼水解液对谷氨酸产量有显著影响,通过最陡爬坡试验和响应面分析法对发酵培养基组成进行优化,得到谷氨酸棒杆菌(Corynebacterium glutamicum)最适发酵培养基组成为葡萄糖30g/L,玉米浆33.9g/L,豆饼水解液19.9g/L,糖蜜30.6g/L,MnSO40.03g/L,FeSO40.03g/L,MgSO42g/L,K2HPO44.5g/L,生物素(VH)0.3mg/L,硫胺素(VB1)0.3mg/L。通过对模型验证实验,谷氨酸产量实际值为111.33g/L,且较未优化的发酵培养基相比谷氨酸产量提高了22.75%。  相似文献   

14.
本实验根据对融合子Sr-1菌株摇瓶培养基组成及发酵条件单因素优化基础上,利用响应面法获得最佳的培养基配方为葡萄糖33g/L、糊精7.7g/L、胰蛋白胨26g/L、酵母浸粉8.2g/L、初始pH7.0、最佳接种龄28h,发酵周期72h。  相似文献   

15.
对富硒产朊假丝酵母发酵培养基进行优化,获得高生物量富硒酵母。从6种发酵培养基中确定G改良培养基为最佳培养基。利用Plackett-Burman设计法从影响富硒产朊假丝酵母生长的12个因子中筛选出葡萄糖、蛋白胨、KH2PO4、CuSO4添加量这4个关键因子。再利用Box-Behnken试验设计及响应面分析法确定关键因子的最佳水平及交互作用。试验得出各关键因子的最优组合为葡萄糖30 g/L、蛋白胨17 g/L、KH2PO4 6.5 g/L、CuSO4 0.01 g/L。结果表明,培养基优化后酵母生物量为12.01 g/L,有机硒含量为1 337.46 μg/g,谷胱甘肽为134.27 mg/L。将培养基中亚硒酸钠添加量由25 μg/mL提高至30 μg/mL,酵母生物量为11.21 g/L,有机硒为1 673.32 μg/g,谷胱甘肽为126.80 mg/L。  相似文献   

16.
夏永军  张贤芳  许赣荣 《食品科学》2012,33(11):185-189
分析樟芝液态发酵菌丝体中的活性代谢产物Antrodin C,并以此化合物为目标,采用Plackett-Burman设计和Box-Behnken中心组合响应面分析,对樟芝液态发酵产Antrotin C培养基进行统计学筛选和优化。结果表明:葡萄糖、黄豆粉和MgSO4对Antrodin C的合成影响最为显著。在葡萄糖 72.0g/L、黄豆粉 5.91g/L、MgSO4 0.614g/L时,樟芝液态发酵产Antrodin C最大预测值为178.59mg/L。验证实验Antrodin C实际产量达到(177.83±0.32)mg/L,表明实验建立的模型能较好地预测实际发酵产Antrodin C情况。通过对培养基的优化,樟芝液态发酵Antrodin C产量比优化前(95.72mg/L)提高了85.8%。  相似文献   

17.
为了筛选L-精氨酸的高产菌株,采用亚硝基胍对出发菌株A TCC 14067 (Brevibacterium flavum)进行诱变,结合抗精氨酸结构类似物D-精氨酸,S-甲基半胱氨酸平板抗性筛选高产菌株,并采用正交试验优化了种子培养基.结果显示,经过1 mg/mL的亚硝基胍诱变处理4min后,采用14 mg/mL的D-精氨酸抗性平板和8mg/mL的S-甲基半胱氨酸抗性平板筛选获得精氨酸高产菌株,由于解除精氨酸自身的反馈调节,L-精氨酸积累增大,产酸量达37.2 g/L,比野生菌株提高了128.2%,得到的高产菌株遗传性状稳定.通过对种子培养基进行正交试验优化,确定最终培养基配方为葡萄糖3.0%,玉米浆2.0%,硫酸铵2.0%,KH2PO4 0.10%,MgSO4·7H2O 0.05%,尿素0.15%,在此发酵条件下,L-精氨酸产量达37.8 g/L.  相似文献   

18.
刘伟民  孙琳洁  刘姜  李国文 《食品科学》2006,27(12):331-334
灰树花是药食两用真菌,富含多糖、氨基酸和多种矿物元素。利用灰树花将无机锌转化为有机锌,能为人体补锌提供一条新的有效途径。稀土元素对生物的生长代谢具有促进作用。为了研究镧和锌元素存在时灰树花液体培养富集锌的能力,设计了四因素四水平的正交试验方案。其因素和水平分别为:硝酸镧浓度50、100、150、200(mg/L培养基),1L培养基中碳源马铃薯/葡萄糖150/18、200/24、250/30、300/36(g/g),氮源麸皮20、25、30、35(g/L培养基)和7水硫酸锌浓度100、600、1300、2000(mg/L培养基)。分别以干菌丝有机锌含量、25ml培养基有机锌产量和锌的转化率3个指标进行了分析,并分别给出了其最优培养条件,以用于指导灰树花液体培养基的设计。以25ml培养基有机锌产量为指标时,得到优化培养基为1L培养基中含ZnSO4·7H2O2000mg、麸皮35g、La(NO3)350mg、马铃薯300g、葡萄糖36g。优化培养基下有机锌的产量为1.472mg/25ml,即58.88mg/L培养基。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号