首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Consumption of nassariid gastropods often leads to poisoning incidents in some coastal provinces in China. To elucidate the pattern of toxicity dynamics and origin of toxins, samples of gastropod Nassarius spp. were collected from late May to early August 2007 from Lianyungang, Jiangsu province, where the poisoning incidents have been frequently reported. Toxicity was first screened with the mouse bioassay method, and tetrodotoxin and its analogues (TTXs) were analysed with high-performance liquid chromatography coupled with an ion-trap mass spectrometer (HPLC-MS(n)). The toxicity of nassariid N. semiplicatus showed an 'M'-shaped pattern of fluctuation during the sampling season. Two peaks of toxicity appeared in late May and late July. The maximum toxicity was recorded on 24 May, with the value of 846 mouse unit (MU) g(-1) of tissue (wet weight). TTX and its analogues trideoxyTTX, 4-epiTTX, anhydroTTX and oxoTTX were detected in the nassariid samples. TrideoxyTTX but not TTX was the major toxin in all the samples. No paralytic shellfish poison (PSP) was detected in the sample with the maximum toxicity by HPLC-FLD analysis. Variation of TTX content in the tissue of nassariid gastropods correlates well with the dynamics of toxicity. It is suggested that TTXs are the major toxins corresponding to the toxicity of the nassariids, and May and July are the high-risk seasons for consumption of nassariids, which is critical for the management of poisoning incidents.  相似文献   

2.
Paralytic gastropod poisoning incidents have frequently occurred in the world. In the outbreaks, the symptoms of victims exhibited quite different patterns depending on the specific outbreak and most of all showed parasthesis with rare fatal cases. The toxin identified was mainly tetrodotoxin (TTX), sometimes with minor paralytic shellfish poison (PSP) and other toxins. Toxic gastropods included Family Nassariidae, Naticidae, Olividae, Muricidae, Buccinidae, Ranellidae, Harpidae, Trochidae, Turbinidae, Burdidae, and Melongenidae. The sources of toxins are from bacteria, dinoflagellate, or biosynthesis. The physiological function of toxin in toxic gastropods acts as defensive and/or attacking agent. The more toxic gastropod has higher preference or palatability preference to TTX and/or PSP.  相似文献   

3.
Tetrodotoxin (TTX), often referred to as the ‘puffer fish’ poison, is a marine toxin and it has been identified as the agent responsible for many food poisoning incidents around the world. It is a neurotoxin that blocks voltage-gated sodium channels, resulting in respiratory paralysis and even death in severe cases. It is known to occur in many different species of fish and other organisms. The toxin is mainly found in the Southeast Asia region. Worryingly, TTX is starting to appear in European waters. It is suspected that this is a consequence of Lessepsian migration, also known as the Erythrean invasion. Therefore, straightforward and reliable extraction and analytical methods are now urgently required to monitor seafood of European origin for TTX. This paper provides a versatile, dependable and robust method for the analysis of TTX in puffer fish and trumpet shellfish using LC-MS/MS. A three-stage approach was implemented involving: (1) the screening of samples using fast multiple reaction monitoring (MRM) mass spectral analysis to identify quickly positive samples on a triple quadrupole mass spectrometer (QqQMS/MS), the API 3000; (2) a Fourier-transform (FT)-MS full-scan analysis of positive samples to collect qualitative data; and (3) a method with a longer chromatography run to identify and quantitate the positive samples using the QqQMS. The quantitative LC-QqQMS method delivered excellent linearity for solvent-based standards (0.01–7.5 µg ml–1; R2 ≥ 0.9968) as well as for matrix-matched standards (0.05–37.50 µg g–1; R2 ≥ 0.9869). Good inter-day repeatability was achieved for all the relevant analytes with %RSD values (n = 9) ranging from 1.11% to 4.97% over a concentration range of 0.01–7.5 µg ml–1. A sample clean-up procedure for the puffer fish and trumpet shellfish was developed to ensure acceptable and reproducible recoveries to enable accurate and precise determination of TTX in a myriad of tissues types. Blank mackerel matrix was used for the TTX standard spiking studies in order to calculate the recoveries of the toxin during the extraction procedure. The recovery was 61.17% ± 5.42% for the extraction protocol. MS/MS studies were performed on a linear-trap quadruple-Orbitrap mass spectrometer (LTQ-Orbitrap) to obtain high-mass-accuracy data of the target analytes and their characteristic fragment ions in the puffer fish and trumpet shellfish samples. This facilitated identification of TTX and its associated analogues. These high-mass-accuracy studies facilitated the development of a rapid MRM-based quantitative method for TTX determination on the LC-QqQMS.  相似文献   

4.
Tetrodotoxin (TTX) is an emerging toxin in the European marine environment. It has various known structural analogues. It acts as a sodium channel blocker; the ability of each analogue to bind to the sodium channel varies with the particular structure of each analogue. Thus, each analogue will vary in its toxic potential. TTX analogues co-occur in food samples at variable concentrations. An LC-MS method was developed for the identification and quantitation of several analogues of TTX using an LTQ-Orbitrap XL mass spectrometer. The LTQ-Orbitrap XL mass spectrometer facilitates high mass accuracy measurement up to 100,000 full width at half maximum (FWHM). Using high resolution at 100,000 FWHM allows for the identification of TTX and its analogues in various matrices, including puffer fish and molluscan shellfish samples (Δ ppm = 0.28–3.38). The confirmation of characteristic fragment ions of TTX and its analogues was achieved by determining their elemental formulae via high mass accuracy. A quantitative method was then developed and optimised using these characteristic fragment ions. The limit of quantitation (LOQ) of the method was 0.136 µg g–1 (S/N = 10) and the limit of detection (LOD) was 0.041 µg g–1 (S/N = 3) spiking TTX standard into TTX-free mackerel fish extracts. The method was applied to naturally contaminated puffer fish and molluscan shellfish samples to confirm the presence of TTX and its analogues.  相似文献   

5.
The toxicity of the gastropod Nassarius glans was investigated. This gastropod was implicated in an incident of food paralytic poisoning on Tungsa Island, Taiwan, in April 2004. Six victims consumed both digestive glands and muscle. These tissues contained high concentrations of toxin; their highest toxicity scores were 2,048 and 2,992 MU/g, respectively, based on the tetrodotoxin (TTX) bioassay. The toxin was purified from these gastropods and analyzed by high-performance liquid chromatography, which revealed TTX and related compounds 4-epi TTX and anhydro-TTX; paralytic shellfish poisons were not found. The urine and blood samples from patients were cleansed using a C18 Sep-Pak cartridge column and 3,000 molecular weight cutoff Ultrafree microcentrifuge filters, and the eluate was filtered and analyzed by liquid chromatography and mass spectrometry. The detection limit for TTX was 1 ng/ml. The standard curves were linear in the range 30 to 600 ng/ml for urine and 1 to 30 ng/ml for blood. TTX was detected in all urine samples but in only three of four blood samples tested. Thus, the causative agent of gastropod food poisoning was identified as TTX.  相似文献   

6.
Abstract

A total of 459 specimens covering 51 species in 9 families was collected from October 1992 to May 1996 in Taiwan. All specimens were assayed for the presence of tetrodotoxin (TTX) and paralytic shellfish poison (PSP). The specimens of five xanthid crabs Zosimus aeneus, Lophozozymus pictor, Ategatopsis germaini, Atergatis floridus, and De‐mania reynaudi were found to contain potent toxins. Among them, A. germaini showed the highest toxicity. The toxin profile of each toxic crab species was as follows: 82% TTX and 18% PSP in Z. aeneus, 89% TTX and 11% PSP in L. pictor, 3% TTX and 97% PSP inA germaini, 85% TTX and 15% in A. floridus, and 88% TTX and 12% PSP in D. reynaudi. PSP was mainly composed of gonyautoxins (GTXs) 1–4 in Z. aeneus, L. pictor, and A. floridus, but GTX 3 and hydroxysaxitoxin in A. germaini, and neosaxitoxin in D. reynaudi. The PSP‐producing dinoflagellate plankton Alexandrium minutum and TTX‐producing bacteria including Vibrio alginolyticus and Vibrio parahaemolyticus were isolated and considered as the sources of the toxins.  相似文献   

7.
Okadaic acid group (OA-group) is a set of lipophilic toxins which are characterised by being produced by species associated with the genera Dinophysis and Prorocentrum. OA-group has been regularly detected in endemic shellfish species from the southern zone of Chile only through the mouse bioassay. The purpose of this work was to determine the variability of OA-group toxins in endemic aquatic organisms (bivalves, crabs, gastropods and fish) and to establish the relationship with the concentration of fatty acids (FAs) detected in the evaluated species. The toxicity of OA-group and the FA profiles were determined using LC-MS/MS and gas chromatography with flame-ionisation detection, respectively. In the study area, the dinoflagellate Dinophysis acuta was detected in densities ≈2000 cells ml?1 with a toxicity ≈18.3 pg OA equiv cel?1. The analysis identified OA and dinophysistoxin-1 in shellfish in a range of ≈90 to ≈225 μg OA eq kg?1, where no toxins in fish were detected. A positive relationship between the FA level and the concentration of OA-group toxins in the digestive glands of bivalves and gastropods was established, noted for high levels of saturated FAs (C14:0 and C16:0). The toxic variability of OA-group toxins determined in the different species allowed us to establish that the consumption of these vectors, regulated by non-analytical methods, can be harmful when consumed by humans, thus suggesting that the sanitary regulations for the control of OA-group in Chile should be updated.  相似文献   

8.
9.
This study identifies the pufferfish species and detects tetrodotoxin (TTX) in roasted fish fillet samples collected in Beijing, Qingdao and Xiamen, China. The cytochrome c oxidase I (COI) gene was used as the target gene for identification of the pufferfish species in the samples. Enzyme-linked immunosorbent assay (ELISA) screened the TTX levels in samples that had been detected as containing pufferfish by DNA barcode. A total of 125 samples were identified by DNA barcodes; 32 (26%) samples contained pufferfish composition and, among them, 26 (81%) were the highly toxic species Lagocephalus lunaris. All 32 samples containing the pufferfish composition were positive for TTX with levels ranging from 100 to 63 800 ng g–1. Most of the 32 samples contained the highly toxic L. lunaris. Based on the results, we suggest that the monitoring of roasted fish fillet should be strengthened and the processing procedures should be standardised to minimise TTX poisoning caused by pufferfish.  相似文献   

10.
The toxin in the gastropods (snails) Zeuxis sufflatus and Niotha clathrata implicated in a food poisoning incident in northern Taiwan in April 2001 was studied. The symptoms exhibited by four victims were general paresthesia, paralysis of the phalanges and the extremities, paralysis, coma, vomiting, and aphasia. The remaining gastropods were assayed for toxicity in the form of tetrodotoxin (TTX). The ranges of specimen toxicity were 345 to 1,640 mouse units (MU) for Z sufflatus and 190 to 643 MU for N. clathrata. The toxicities of the digestive gland and for other parts of the gastropod were 1,120 +/- 477 MU and 497 +/- 238 MU, respectively, for Z sufflatus and 683 +/- 113 MU and 289 +/- 169 MU, respectively, for N. clathrata. The toxin from the methanolic extract of the gastropods was partially purified by ultrafiltration and Bio-Gel P-2 column chromatography. Cellulose acetate membrane electrophoresis, thin-layer chromatography, high-performance liquid chromatography, and gas chromatography-mass spectrometry analyses demonstrated that the toxin consisted of TTX. It was concluded that the causative agent of the food poisoning in question was TTX.  相似文献   

11.
The aim of this study was to analyse and determine the composition of paralytic shellfish poisoning (PSP) toxins and lipophilic toxins in the Region of Aysén, Chile, in wild endemic mussels (Mytilus chilensis, Venus antiqua, Aulacomya ater, Choromytilus chorus, Tagelus dombeii and Gari solida) and in two endemic carnivorous molluscs species (Concholepas concholepas and Argobuccinum ranelliforme). PSP-toxin contents were determined by using HPLC with fluorescence detection, while lipophilic toxins were determined by using LC-MS/MS. Mean concentrations for the total of PSP toxins were in the range 55–2505 μg saxitoxin-equivalent/100 g. The two most contaminated samples for PSP toxicity were bivalve Gari solida and carnivorous Argobuccinum ranelliforme with 2505 ± 101 and 1850 ± 137 μg saxitoxin-equivalent/100 g, respectively (p < 0.05). The lipophilic toxins identified were okadaic acid, dinophysistoxin-1 (DTX-1), azaspiracid-1 (AZA-1), pectenotoxin-2 (PTX-2) and yessotoxins (YTX). All analysed molluscs contained lipophilic toxins at levels ranging from 56 ± 4.8 to 156.1 ± 8.2 μg of okadaic acid-equivalent/kg shellfish together with YTX at levels ranging from 1.0 ± 0.1 to 18 ± 0.9 μg of YTX-equivalent/kg shellfish and AZA at levels ranging from 3.6 ± 0.2 to 31 ± 2.1 μg of AZA-equivalent/kg shellfish. Furthermore, different bivalves and gastropods differ in their capacity of retention of lipophilic toxins, as shown by the determination of their respective lipophilic toxins levels. In all the evaluated species, the presence of lipophilic toxins associated with biotransformation in molluscs and carnivorous gastropods was not identified, in contrast to the identification of PSP toxins, where the profiles identified in the different species are directly related to biotransformation processes. Thus, this study provides evidence that the concentration of toxins in the food intake of the evaluated species (Bivalvia and Gastropoda class) determines the degree of bioaccumulation and biotransformation they will thereafter exhibit.  相似文献   

12.
Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/–) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g?1), T. dombeii (148 ± 1.4 μg STX-eq 100 g?1) and G. solida (3232 ± 5.2 μg STX-eq 100 g?1; < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 μg STX-eq 100 g?1; < 0.05) and in the foot in C. concholepas (81 ± 0.7 μg STX-eq 100 g?1) and T. dombeii (114 ± 1.2 μg STX-eq 100 g?1). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg?1 (< 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a toxicity < 80 μg OA eq kg?1, but with 74% of those toxins detected in the adductor muscle. In all evaluated species, there was no detection of lipophilic toxins associated with biotransformation in molluscs and carnivorous gastropods. In addition, the STX-group and OA-group toxin concentrations in shellfish was not associated with the presence of HAB. The ranking of toxin concentration in the tissues of most species was: digestive glands > mantle > adductor muscle for the STX-group toxins and foot > digestive gland for the OA-group toxins. These results gave a better understanding of the variability and compartmentalisation of STX-group and OA-group toxins in different bivalve and gastropod species from the south of Chile, and the analyses determined that tissues could play an important role in the biotransformation of STX-group toxins and the retention of OA-group toxins.  相似文献   

13.
This paper reports the results of investigations of shellfish toxin contamination of products obtained from Shanghai seafood markets. From May to October 2003, 66 samples were collected from several major seafood markets. Paralytic shellfish poisoning (PSP) and diarrhetic shellfish poisoning (DSP) toxins in shellfish samples were monitored primarily by a mouse bioassay, then analysed by HPLC for the chemical contents of the toxins. According to the mouse bioassay, eight samples were detected to be contaminated by PSP toxins and seven samples were contaminated by DSP toxins. Subsequent HPLC analysis indicated that the concentrations of the PSP toxins ranged from 0.2 to 1.9 µg/100 g tissues and the main components were gonyautoxins 2/3 (GTX2/3). As for DSP, okadaic acid was detected in three samples, and its concentration ranged from 3.2 to 17.5 µg/100 g tissues. Beside okadaic acid, its analogues, dinophysistoxins (DTX1), were found in one sample. According to the results, gastropod (Neverita didyma) and scallop (Argopecten irradians) were more likely contaminated with PSP and DSP toxins, and most of the contaminated samples were collected from Tongchuan and Fuxi markets. In addition, the contaminated samples were always found in May, June and July. Therefore, consumers should be cautious about eating the potential toxic shellfish during this specific period.  相似文献   

14.
Food poisoning due to ingestion of a puffer fish occurred in Nagasaki Prefecture, Japan, in October 2008, causing neurotoxic symptoms similar to those of tetrodotoxin (TTX) poisoning. In the present study, we identified the species, toxicity, and toxins using the remaining samples of the causative puffer fish. The puffer fish was identified as smooth-backed blowfish Lagocephalus inermis by nucleotide sequence analysis of the 16S rRNA and cytochrome b gene fragments of muscle mitochondrial DNA. The residual liver sample showed toxicity as high as 1,230 mouse unit (MU)/g by bioassay and TTX was detected by liquid chromatography/mass spectrometry analysis. We therefore concluded that the food poisoning was due to TTX caused by consumption of the toxic liver of L. inermis. This is the first report that the liver of L. inermis caught in Japanese waters is strongly toxic, with levels exceeding 1,000 MU/g. In this context, we re-examined the toxicity of L. inermis collected off the coast of Japan. Of 13 specimens assayed, 12 were toxic, although the toxicity varied markedly among individuals and tissues. Because the intestine and ovary of L. inermis have been considered non-toxic, it is particularly noteworthy that these organs were determined to be toxic, with a maximum toxicity of 43.6 MU/g and 10.0 MU/g, respectively. Furthermore, kidney, gallbladder, and spleen, whose toxicity has been unknown, were frequently found to be weakly toxic with levels ranging from 10 to 99 MU/g. Therefore, further study is needed to re-examine the toxicity of smooth-backed blowfish L. inermis in the coastal waters of Japan.  相似文献   

15.
Contamination of shellfish with lipophilic marine biotoxins (LMB), pectenotoxins (PTXs), yessotoxins (YTXs) and okadaic acid (OA) toxin groups in southern Chile is a constant challenge for the development of miticulture considering the high incidence of toxic episodes that tend to occur. This research is focused on using methodologies for assessing the decrease in toxins of natural resources in Chile with high value, without altering the organoleptic properties of the shellfish. The species were processed through steaming (1 min at 121°C) and subsequent canning (5 min at 121°C). Changes in the profiles of toxins and total toxicity levels of LMB in endemic bivalves and gastropods were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total reduction of toxicity (≈ 15%) was not related to the destruction of the toxin, but rather to the loss of LMB on removing the shells and packing media of canned products (***p < 0.001). Industrial processing of shellfish reduces LMB contents by up to 15% of the total initial contents, concomitant only with the interconversion of PTX-group toxins into PTX-2sa. In soft bottom-dwelling species with toxicities beyond the standard for safe human consumption (≥ 160 μg OA-eq kg1), toxicity can be reduced to safe levels through industrial preparation procedures.  相似文献   

16.
Samples of toxic scallop (Patinopecten yessoensis) and clam (Saxidomus purpuratus) collected on the northern coast of China from 2008 to 2009 were analysed. High-performance liquid chromatography with post-column oxidation and fluorescence detection was used to determine the profile of the main paralytic shellfish poisoning (PSP) toxins in these samples and their total toxicity. Hydrophilic interaction liquid ion chromatography with mass spectrometric detection confirmed the toxin profile and detected several metabolites in the shellfish. Results show that C1/2 toxins were the most dominant toxins in the scallop and clam samples. However, GTX1/4 and GTX2/3 were also present. M1 was the predominant metabolite in all the samples, but M3 and M5 were also identified, along with three previously unreported presumed metabolites, M6, M8 and M10. The results indicate that the biotransformation of toxins was species specific. It was concluded that the reductive enzyme in clams is more active than in scallops and that an enzyme in scallops is more apt to catalyse hydrolysis of both the sulfonate moiety at the N-sulfocabamoyl of C toxins and the 11-hydroxysulfate of C and GTX toxins to produce metabolites. This is the first report of new metabolites of PSP toxins in scallops and clams collected in China.  相似文献   

17.
A monoclonal antibody against tetrodotoxin (TTX) was produced from the hybridoma cell line T6D9, which was established by the fusion of Sp2/0 myeloma cells with spleen cells isolated from a Balb/c mouse immunized with the TTX–keyhole limpet hemocyanin (KLH) conjugate. This monoclonal antibody belongs to the IgG1 subclass; the affinity constant of the antibody is 2.4 × 10?8 mol l?1. The relative cross-reactivity of the antibody with TTX was 100%, but with saxitoxin, KLH and bovine serum albumin (BSA) it was less than 1%, respectively. The titre of the antibody in ascites was 6.4 × 106; the reference working concentration was 1:1.2 × 105. By using this monoclonal antibody, a competitive indirect enzyme-linked immunoabsorbant assay (ELISA) for the analysis of TTX was developed. The linear portion of the dose–response curve of TTX concentration was in range 5–500 ng ml?1. The limit of detection was 5 ng ml?1 according 10% inhibition with TTX to anti-TTX monoclonal antibody. The concentration of TTX inhibiting 50% of antibody binding was about 50 ng ml?1. The recoveries from TTX spiked samples were 79.5–109.5%. In addition, the toxicity of some wild puffer fish specimens captured from south-east China and the Yangzi River in Jiangsu province was determined. The results indicate that the toxicity and toxin tissue distribution vary in different species of wild puffer fish.  相似文献   

18.
Paralytic shellfish toxins were quantified in whole tissues of the mussel Mytilus galloprovincialis exposed to blooms of the dinoflagellate Gymnodinium catenatum in Portuguese coastal waters. A validated liquid chromatography method with fluorescence detection, involving pre-chromatographic oxidation was used to quantify carbamoyl, N-sulfocarbamoyl and decarbamoyl toxins. In order to test for any matrix effect in the quantification of those toxins, concentrations obtained from solvent and matrix matched calibration curves were compared. A suppression of the fluorescence signal was observed in mussel extract or fraction in comparison to solvent for the compounds dcGTX2?+?3, GTX2?+?3 and GTX1?+?4, while an enhancement was found for C1?+?2, dcSTX, STX, B1, dcNEO and NEO. These results showed that a matrix effect varies among compounds. The difference of concentrations between solvent and matrix matched calibration curves for C1?+?2 (median?=?421?ng?g?1) exceeded largely the values for the other quantified compounds (0.09–58?ng?g?1). Those differences were converted into toxicity differences, using Oshima toxicity equivalence factors. The compounds C1?+?2 and dcNEO were the major contributors to the differences of total toxicity in the mussel samples. The differences of total toxicity were calculated in ten mussel samples collected during a 10-week blooming period in Portuguese coastal lagoon. Values varied between 53 and 218?µg STX equivalents kg?1. The positive differences mean that the estimated toxicity using solvent calibration curves exceed the values taking into account the matrix. For the toxicity interval 200–800?µg STX equivalents kg?1 an increase was found between 44 and 28%.  相似文献   

19.
目的 分析云南省毒蘑菇中毒事件的流行特征及空间相关分布,为制定云南省蘑菇中毒事件有效防控策略和措施提供科学依据.方法 通过突发公共卫生事件报告管理信息系统收集2005-2019年云南省报告的毒蘑菇中毒事件的相关信息,描述和分析时间、发生场所、空间相关性和毒蘑菇种类等流行病学特征.结果 2005-2019年云南省共报告毒...  相似文献   

20.
目的 通过对2016-2020年郴州市毒蕈中毒事件的流行病学特征进行描述性分析,为制定毒蕈中毒预防控制措施提供科学依据.方法 收集和整理2016-2020年郴州市通过"食源性疾病事件报告系统"上报的毒蕈中毒事件资料,对事件发生的时间、地区、人群特征以及毒蕈来源、种类进行描述性分析.结果 2016-2020年郴州市共报告...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号