首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Beef meat batters formulated with increasing protein level (10–15%) and containing 25% beef fat were compared to batters prepared with 25% canola oil. Emulsion stability of the canola oil treatments was higher (less separation during cooking) at the 10–13% protein level compared to the beef fat treatments. However, above 13% protein this was reversed and the canola oil treatments showed high fat and liquid separation, which did not occur at all in the beef fat treatments. This indicates differences in stabilization of fat versus oil in such meat emulsions. Hardness of the cooked meat batters showed significantly (P < 0.05) higher values when the protein level was raised, and was higher in canola oil than in beef fat meat emulsions at similar protein levels. Products’ chewiness were higher in the canola oil treatments compared to the beef fat emulsions. Lightness decreased and redness increased in canola oil batters as the protein level was raised. The micrographs revealed the formation of larger fat globules in the beef fat emulsions compared to the canola oil meat emulsions. The canola oil treatment with 14% protein started to show fat globule coalescence, which could be related to the reduced emulsion stability.  相似文献   

2.
ABSTRACT: The effects of beef fat (25%) substitution with rendered beef fat, canola oil, palm oil, or hydrogenated palm oil at varying meat protein levels (8%, 11%, and 14%) were studied in emulsified beef meat batters. There was no significant difference in fat loss among meat batters made with beef fat, rendered beef fat, or palm oil. Hydrogenated palm oil provided the most stable batters at all protein levels. Increasing meat protein to 14% resulted in high fat loss in batters prepared with canola oil, which did not occur in the other formulations. This indicates that the physicochemical characteristics of fat/oil affect emulsion stability. Cooked batter hardness was higher (P < 0.05) when protein level was raised; highest in hydrogenated palm oil batters when compared at similar protein levels. As protein level was raised springiness values were increased in all the meat treatments. Springiness was higher in the canola oil treatments. Light microscopy revealed fat globule coalescence in canola oil meat batters prepared with 14% protein, as well as the development of fat channels and more protein aggregation; both seem to result in lower emulsion stability. Hydrogenated palm oil batters showed fat particles with sharp edges as opposed to the round ones seen in all other treatments.  相似文献   

3.
'Alto'canola seed and sesame seed were toasted at 180, 200, 220, 240, and 260C, for 8 min or 10 min. As temperature increased, minor changes in fatty acid composition were observed. Darkness and blueness in canola oil increased with toasting temperatures up to 240C, and then decreased. The darkness, greenness and yellowness of sesame seed oil increased with increasing toasting temperature. The overall color of canola oil was significantly darker than that of sesame seed oil (α 0.05). 2-Thiobarbituric acid (TBA) numbers for both oils increased as toasting temperature increased. TBA numbers of the canola oil increased with extended storage time up to 4 weeks and then decreased. For sesame seed oil, TBA numbers also were influenced by storage time, but less change was observed than for canola oil. 2-Thiobarbituric acid reactive substances (TBARS) content of canola oil was significantly higher than that for sesame seed oil when TBA numbers were compared to the same treatment.  相似文献   

4.
A 42-day study was conducted to evaluate the effect of genotype: terminal sire line Duroc × F1 (DC×F1); terminal sire line Embrapa MS-115 × F1 (MS-115×F1); and MS-115 × Moura (MS-115×MO) and three dietary oil sources: soybean; canola; and canola + flax, on performance, carcass traits, pork quality, and fatty acid composition. Genotype affected the technological quality of pork and fatty acid profile. MS-115-sired pigs had better meat color and Duroc-sired pigs had higher intramuscular fat content, more saturated fat and better omega-6/omega-3 ratio. Moura breed influenced positively meat tenderness and intramuscular fat. Diet did not affect the technological quality of the meat. Canola or canola + flax oil diet supplementations increased monounsaturated and C18:3 and decreased C18:2 fatty acids, reducing the omega-6/omega-3 ratio. The best omega-6/omega-3 ratio was obtained through supplementation with canola + flax.  相似文献   

5.
Youssef MK  Barbut S 《Meat science》2011,87(4):356-360
The effects of fat reduction (25.0%, 17.5%, and 10.0%) and substituting beef fat with canola oil or pre-emulsified canola oil (using soy protein isolate, sodium caseinate or whey protein isolate) on cooking loss, texture and color of comminuted meat products were investigated. Reducing fat from 25 to 10% increased cooking loss and decreased hardness. Canola oil or pre-emulsified treatments showed a positive effect on improving yield and restoring textural parameters. Using sodium caseinate to pre-emulsify the oil resulted in the highest hardness value. Cohesiveness was affected by fat type and level. The color of reduced fat meat batters was darker for all, except the beef fat treatments. Using canola oil or pre-emulsified oil resulted in a significant reduction in redness. The results show that pre-emulsification can offset some of the changes in reduced fat meat products when more water is used to substitute for the fat and that pre-emulsification can also help to produce a more stable meat matrix.  相似文献   

6.
'Alto'variety canola seed and yellow sesame seed were toasted at 180, 200, 220, 240 and 260C for 8 min and 10 min, respectively. Control oils from nontoasted seeds were also evaluated. Oils from ground canola and sesame seed were extracted with hexane at 25C for 10 h. Two ranking tests for odor preference were performed by a Korean panel. Among the canola oils, oil for seeds toasted at 240C was significantly better, and oil from seed toasted at 200C was significantly (p ≤ 0.05) worse than the others. Oils from sesame seed toasted at 220 and 260C were significantly better and untoasted and toasted sesame seed oil at 180C were significantly (p ≤ 0.05) worse than the other sesame seed oils. A second ranking test was performed to find the best oil among the canola and sesame seed oils. The toasted sesame seed oil at 260C was significantly better, and the toasted canola oil at 200C was significantly (p ≤ 0.05) worse. Among the other toasted oils, canola oil toasted at 240 and 260C and sesame seed oil toasted at 220 and 240C were not significantly different from each other. The ranking test showed that toasted canola oils were not significantly different from toasted sesame seed oils except toasted sesame seed oil at 260C.  相似文献   

7.
Although sesame seed oil contains high levels of unsaturated fatty acids and even a small amount of free fatty acids in its unrefined flavored form, it shows markedly greater stability than other dietary vegetable oils. The good stability of sesame seed oil against autoxidation has been ascribed not only to its inherent lignans and tocopherols but also to browning reaction products generated when sesame seeds are roasted. Also, there is a strong synergistic effect among these components. The lignans in sesame seed oil can be categorized into two types, i.e. inherent lignans (sesamin, sesamolin) and lignans mainly formed during the oil production process (sesamol, sesamolinol, etc.). The most abundant tocopherol in sesame seed oil is γ‐tocopherol. This article reviews the antioxidant activities of lignans and tocopherols as well as the browning reaction and its products in sesame seed and/or its oil. It is concluded that the composition and structure of browning reaction products and their impacts on sesame ingredients need to be further studied to better explain the remaining mysteries of sesame oil. © 2014 Society of Chemical Industry  相似文献   

8.
芝麻油掺棕榈油鉴别方法的研究   总被引:2,自引:0,他引:2  
以4种不同熔点棕榈油与4种芝麻油所配制的128个掺伪芝麻油样品为原料,分别采用全样脂肪酸组成分析法、Sn-2位脂肪酸组成分析法和甘三酯结构分析法对芝麻油中掺棕榈油的鉴别方法进行了研究。结果表明:在全样脂肪酸组成分析法中,当以棕榈酸为标准与芝麻油纯样和国标数据比较时,检出限分别为5%和15%。在Sn-2位脂肪酸组成分析法和甘三酯结构分析法中,当与芝麻油纯样数据比较,分别以亚油酸与棕榈酸含量比值(18:2/16:0)和β-POO(Sn-1-棕榈酸-2,3-二油酸甘油酯)含量为判断标准时,检出限分别为20%和12%。综合这3种方法的检出限高低及分析操作难易程度,初步得出结论:在芝麻油掺棕榈油的鉴别方法中,全样脂肪酸组成分析法是最好的鉴别方法,其余2种方法一般不优先采用,但可作为对上述方法的验证与补充。  相似文献   

9.
利用气相色谱法分析和确定香油中脂肪酸组成的分布特征,以此建立一种快速鉴别香油是否掺加大豆油的分析方法。研究结果表明,测量假芝麻油样品中C18∶1n9c和C18∶3n3两种特征脂肪酸含量,使用二元一次方程可以计算假芝麻油中大豆油的含量,芝麻油约为90%时,最大计算误差为8.16%,其结果为(实测值±7.36) g/100 g;芝麻油约为70%时,最大计算误差为15.55%,其结果为(实测值±10.84) g/100 g;芝麻油约为50%时,最大计算误差为30.35%,其结果为(实测值±15.00) g/100 g。这个计算方法是可行的,可以用来鉴别芝麻油中是否掺加大豆油,并计算出掺假芝麻油中大豆油的含量。  相似文献   

10.
Four combinations of prilled fat and canola oil were fed to 10 lactating Holstein cows in a replicated 5 x 5 Latin square to determine whether mixing plant oil with a rumen inert fat had additive effects on digestive and lactation responses. Five diets of concentrate and corn silage (1:1, DM basis) contained either no added fat (control) or 5% fat comprising 100, 67, 33, or 0% prilled fat and the remainder canola oil. The fat supplement containing 100% prilled fat appeared to be rumen-inert because it caused no changes in ruminal VFA concentration, acetate to propionate ratio, or total tract fiber digestion. Prilled fat increased milk production, FCM, and milk fat percentage but decreased milk protein percentage, including casein content. Increasing canola oil in the fat supplement caused linear declines in ruminal VFA, acetate to propionate ratio, and milk production. Milk production efficiency (weight FCM/weight DMI) exceeded the control diet when fat supplements contained 100 or 67% prilled fat but dropped below control for 33 and 0% prilled fat. This study demonstrates additive effects of combining canola oil with hydrogenated, prilled fat on ruminal fermentation but nonadditive effects on milk production efficiency and milk composition. At low levels of supplementation, plant oils, such as the canola oil used in this study, can inhibit ruminal fermentation but still maintain milk production efficiency.  相似文献   

11.
International dietary guidelines advocate replacement of saturated and trans fat in food with unsaturated oils. Also, there is growing interest in incorporating highly unsaturated omega‐3 oils in to food products due to beneficial health effects. A major obstacle to incorporating highly unsaturated oils in to food products is the extreme susceptibility to oxidative deterioration. Oil bodies were prepared from tuna oil, oleosin, and phospholipid mimicking natural oil bodies within oilseed. Oleosin was extracted from canola (Brassica napus) meal by solubilization in aqueous sodium hydroxide (pH 12) and subsequent precipitation at its isoelectric point of pH 6.5. The tuna oil artificial oil bodies (AOBs) readily dispersed in water to produce oil‐in‐water (o/w) emulsions, which did not coalesce on storage and were amenable to pasteurization using standard conditions. Accelerated oxidation studies showed that these AOB emulsions were substantially more resistant to lipid oxidation than o/w emulsions prepared from tuna oil using Tween40, sodium caseinate, and commercial canola protein isolate, respectively. There is potential to use commercial canola meal, which is cheap and abundant, as a natural source of oleosin for the preparation of physically and oxidatively stable food emulsions containing highly unsaturated oils.  相似文献   

12.
Six lactating Jersey cows were used in a 6 x 6 Latin square with 14-d periods to evaluate different ratios of canola oil and oleamide on nutrient digestibility, plasma fatty acids, and plasma hormones. The control diet contained no added fat. All other diets contained 3.5% added fat consisting of 0, 25, 50, 75, and 100% as oleamide and the remainder as canola oil. Data were collected during the final 4 d of each period. Dry matter intake was reduced by the addition of canola oil to the diet, and further reduced by replacing canola oil with oleamide. Milk yield was not affected by diet but increasing oleamide proportion in the fat supplement caused linear increases in cis-C18:1 and linear decreases in C4 to C16 fatty acids in milk. Adding canola oil reduced total tract digestibilities of fiber and fatty acids, but had no effect on the digestibilities of dry matter or protein. Replacing canola oil with oleamide increased protein digestibility linearly, and increased digestibility of fiber (quartic relationship) and fatty acids (quadratic relationship). Oleic acid concentration in plasma increased by adding canola oil to the diet, and was further increased by replacing canola oil with oleamide. Diet had no effect on plasma concentrations of insulin or IGF-I. Oleamide fed to Jersey cows in this study was highly digestible and had no deleterious effects on total tract digestility of fiber or protein. Increasing oleic acid concentration in plasma lipids while maintaining a constant level of added fat in the ration had no effect on circulating concentrations of insulin or IGF-I in Jerseys.  相似文献   

13.
The effects of substituting olive, grape seed, corn, canola, or soybean oil and rice bran fiber on the chemical composition, cooking characteristics, fatty acid composition, and sensory properties of low-fat frankfurters were investigated. Ten percent of the total fat content of frankfurters with a total fat content of 30% (control) was partially replaced by one of the vegetable oils to reduce the pork fat content by 10%. The moisture and ash content of low-fat frankfurters with vegetable oil and rice bran fiber were all higher than the control (P < 0.05). Low-fat frankfurters had reduced-fat content, energy values, cholesterol and trans-fat levels, and increased pH, cooking yield and TBA values compared to the controls (P < 0.05). Low-fat frankfurters with reduced-fat content plus rice bran fiber had sensory properties similar to control frankfurters containing pork fat.  相似文献   

14.
在广泛收集不同产地芝麻油纯正样品基础上,用气相色谱进行分析,得到纯芝麻油的特征脂肪酸组成,以此作为实际样品鉴别的基础,并对人为掺入大豆油、葵花籽油、玉米油等植物油的模拟样品进行脂肪酸组成分析,经统计分析形成具有代表性的方程式和图表,作为芝麻油掺伪定性和定量的判断依据。  相似文献   

15.
The effects of pre‐emulsified beef fat and canola oil (CO) (25%) with Tween 80 (T‐80) or sodium caseinate (SC) were studied in beef meat batters prepared at three protein levels (9%, 12% and 15%). Raising meat protein level to 15% resulted in low emulsion stability of products prepared with CO. Using pre‐emulsified beef fat with Tween 80 (BF‐T80) showed significantly higher fat and water losses at all protein levels. There were no differences in fat and water losses between pre‐emulsified beef fat and CO when SC was used at the 9% and 12% protein levels compared to the controls (non pre‐emulsification). Light microscopy revealed fat globule coalescence in the CO meat batters prepared with 15% protein and BF‐T8 treatments, as well as formation of fat channels and more protein aggregation; both resulted in lower emulsion stability. Using SC to emulsify fat/oil produced a finer dispersion of fat globules compared to all the other treatments.  相似文献   

16.
The objective was to determine the influence of dietary lipid on total and sn-2 fatty acid composition and triglyceride structure of milk fat in lactating Holstein cows. Five primiparous Holstein cows surgically fitted with ruminal and duodenal cannulas were used in a 4 x 5 incomplete Latin square. All cows received a basal diet. Treatments consisted of a basal diet with no supplemental canola oil (control), basal diet with canola oil added to the concentrate portion of the diet to provide 1.6% fat, basal diet with 330 g of canola oil infused directly into the rumen, and basal diet with 330 g of canola oil infused directly into the abomasum. Canola oil treatments decreased palmitic acid and increased oleic acid content of milk fat compared with the control. Stearate was higher when canola oil was rumen available compared with control and abomasal infusion. Abomasal infusion increased linoleic and linoleic acids in milk fat compared with the other treatments. The sn-2 fatty acid composition reflected total fatty acid composition. All canola oil treatments reduced palmitic acid and increased oleic acid content at the sn-2 position. Changes in sn-2 composition reflect specificity of the acyl transferases and substrate concentration. Triglyceride composition reported as carbon number was altered by canola oil. Triglycerides in carbon number C50, C52, and C54 were increased while C32, C34, and C36 were decreased.  相似文献   

17.
J. Chung    J. Lee    E. Choe 《Journal of food science》2004,69(7):574-578
ABSTRACT: Effects of roasted sesame seed oil on the oxidative stability of soybean oil during frying of flour dough at 160 °C were studied by determining fatty acid composition and conjugated dienoic acid (CDA), p -anisidine (PA), and free fatty acid (FFA) values. Concentration of sesame oil in frying oil was 0%, 10%, 20%, or 30% (v/v). Tocopherols and lignan compounds in the frying oil were also determined by high-performance liquid chromatography. As the number of fryings performed by the oil increased, linolenic acid content in frying oil decreased, and the decreasing rate was lower in frying oil containing sesame oil than in the oil containing no sesame oil. CDA and FFA values of frying oil increased during frying and their relative values to the initial value were lower in frying oil containing sesame oil than in the oil containing no sesame oil. This indicates that the addition of sesame oil improved thermooxidative stability of frying oil, possibly due to the presence of lignan compounds in sesame oil. Tocopherols and lignan compounds in frying oil decreased during frying. As the amount of sesame oil in frying oil increased, degradation of tocopherols increased and lignan compounds degradation decreased. Tocopherols were suggested to protect lignan compounds in sesame oil from decomposition during frying.  相似文献   

18.
To assess an impact of heated edible oils on intake of trans fat, the formations of trans fatty acids (TFAs) in cooking conditions was estimated by a frying and heating model system. For the frying model, sliced raw potatoes (10% of the frying oil (w/w)) were fried in commercially available canola oil at 160, 180 and 200 °C, and the 10 frying cycles were performed. The TFAs contained both in fried potatoes and in frying oils were measured by gas chromatography (GC). Lipids content of raw potatoes was about 0.1% (w/w) and TFAs in the raw potatoes were negligible. On the other hand, fried potatoes contained lipids at the level of 8.8%–9.2% and their fatty acid composition was mostly in correspondence with that of the frying oil. The TFAs amount of potatoes fried by the tenth frying operation was at the level of 0.99–1.05 g/100 g lipids. When 100 g potatoes fried in this process were consumed, the TFAs intake was estimated at less than 0.1 g. After 10 frying operations, TFAs content, acid values and peroxide values of the frying oils were measured and compared with those of corresponding heated canola oils without food. The amounts of trans 18:1 FAs contained both in the frying oil and in heated oil were less than the quantitative limit (0.047 g/100 g oil). The increases of trans 18:2 FAs and trans 18:3 FAs of the used frying oil were 0.02 g/100 and 0.05 g/100 g, respectively, compared with those of the fresh oil. trans 18:2 FAs accumulation in the heated oil was slightly less than that in the frying oil. To elucidate TFAs accumulation in various edible oils during cooking, six kinds of commercially available edible vegetable oils were heated to 180 °C in glass test tubes. Small changes in TFAs amounts were observed after four hours heating. These results suggested that an ordinary frying process using unhydrogenated edible oils has little impact on TFAs intake from edible oils.  相似文献   

19.
The effects of feeding rumen-inert fat sources on production responses of lactating dairy cows have been well reported but less thoroughly described in lactating dairy buffalo. The objective of this study was to investigate the effect of oil and 2 different rumen-inert fat sources on dry matter intake, milk yield, milk composition, and milk fatty acid (FA) profile in Nili Ravi buffalo. Twelve multiparous mid-lactating Nili Ravi buffaloes received 4 treatments in a 4 × 4 Latin square design with a period length of 21 d. The treatments were (1) the basal diet without supplementation of oil or fats (CTRL), (2) the basal diet supplemented with canola oil (CO), (3) the basal diet supplemented with calcium salts of palm FA (Ca-FA), and (4) the basal diet supplemented with high palmitic acid (PA). Dry matter intake was decreased by 4.4% in the CO compared with Ca-FA and PA. Milk yield and milk fat yield were increased by 7.8 and 14.3%, respectively, in CO, Ca-FA, and PA compared with the CTRL. Milk fat content increased by 7.5%, whereas milk fat yield tended to increase with the supplementation of Ca-FA and PA compared with CO. No effect on milk yield and milk composition was observed in Ca-FA versus PA treatments. The yield of medium-chain FA was increased by Ca-FA and PA versus CO. The CO treatment increased the yield of long-chain FA compared with Ca-FA and PA treatments. Plasma glucose level was higher in CO, Ca-FA, and PA compared with the CTRL. In conclusion, feeding rumen-inert fats in the lactating buffalo diet proved to be a useful strategy to increase the 3.5% fat-corrected milk yield due to the higher milk fat content in this study.  相似文献   

20.
Stability of palm olein (PO) and a blend 50% palm olein/50% canola oil (POC) during deep‐fat frying at 180 °C of French fries (FF) or chicken nuggets (CN) was studied through the determination of physical and chemical parameters in the fresh and used oils. Degradation at the end of the study resulted in total polar compounds of 12–13.5% for PO and 11.5–14.5% for POC and viscosity of 65–123.3 cP for PO and 63–72.8 cP for POC. Lower peroxide values (5.33–6.32) were obtained for the blend (PO had 5.21–8.55). Food type affected colour parameters and p‐anisidine value of the oils. For CN, the lowest fat content and higher hardness were obtained when they were fried in PO. CN caused a faster deterioration in the oils, in comparison with FF, especially in POC. Gas chromatography allowed to observe differences in fatty acids composition for both used oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号