首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着锂离子电池的不断推广与应用,对电池隔膜提出了更薄、更密的要求,对其制备原料的纤维直径提出了更高的技术要求。然而,目前中国产的超细纤维难以满足单丝线密度≤0.5 dtex的要求。本文将聚丙烯(PP)和聚酰胺(PA6)进行双组分复合纺丝,通过在显微镜下观察纺流丝的横截面形态,确定纺丝组件及原料组分比例;在此基础上,通过优选工艺条件,确定纺丝温度、牵伸倍数、纺丝速度;同时对纤维的线密度、拉伸性能和取向度进行了测试分析研究。结果表明:当采用PP与PA6进行中空橘瓣型复合纺丝时,PP螺杆挤出机各区温度为225℃/225℃/230℃/230℃、PA6螺杆挤出机各区温度为270℃/270℃/275℃/275℃、PP纺丝副箱体温度为230℃、PA6纺丝副箱体为275℃、纺丝主箱体温度为270℃、PA6与PP的质量比为40︰60、纺丝速度为2 800 m/min、牵伸倍数为3.0时,纤维的可纺性、拉伸性能及取向良好。制备的中空橘瓣型复合超细纤维满足了锂离子电池隔膜用超细纤维直径的要求。  相似文献   

2.
锂离子电池隔膜研究进展   总被引:5,自引:5,他引:0       下载免费PDF全文
隔膜位于锂离子电池的正极和负极之间,是电池的重要组成部分之一,对电池的安全性起着至关重要的作用.本文介绍了聚烯烃基、非织造布和纤维素纸基锂离子电池隔膜及其复合隔膜的研究进展,分析了各类隔膜材料的优缺点及其对电池电化学性能的影响,并对锂离子电池隔膜的发展趋势进行了展望.  相似文献   

3.
重点对锂离子电池用微孔膜常用的原料及加工工艺、电池对微孔膜的性能要求进行了阐述。对国内外锂离子电池隔膜的开发现状进行了研究,提出我国在电池隔膜方面必须加大研究和开发的力度,摆脱对进口电池隔膜的依赖。展望了未来锂离子电池的发展方向一聚合物锂离子电池,可以预测聚合物电解质膜将是今后锂离子电池隔膜的一个发展方向。  相似文献   

4.
本文结合隔膜在锂离子电池中的作用机制及消费型锂离子电池的发展方向,探讨当下锂离子电池隔膜材料和工艺的具体现状和主要问题,阐述通过不同工艺在通用隔膜上复合具有亲液、耐高温等性能的无机材料涂层,从而获得隔膜性能适应性提升的具体制备对策,并对各类无机复合隔膜的性能进行解构和分析,旨在为促进我国锂离子电池隔膜工艺及材料的发展提供借鉴与参考。  相似文献   

5.
隔膜性能是影响聚合物锂离子电池性能的重要因素,制备出性能优良的隔膜将有助于聚合物锂离子电池的进一步推广和应用.以聚烯烃纤维非织造布作为支撑体材料制备复合膜,对复合膜的微孔结构、力学性能和孔隙率进行测试和分析.将复合膜浸泡在电解液中形成凝胶电解质膜,然后组装电池.结果显示,组装的聚合物锂离子电池的充放电性能良好.  相似文献   

6.
介绍了锂离子电池隔膜的主要作用、原理、性能、国内外研究与发展现状。锂离子隔膜电池具有安全性,可靠性,长循环寿命、绿色环保等特点,使得锂离子电池隔膜的研究取得了较大进展,为工业化应用奠定了理论基础。  相似文献   

7.
介绍了静电纺锂离子电池隔膜的微孔结构以及润湿性、离子电导率、电化学稳定性及热尺寸稳定性等性能。综述了静电纺锂离子电池隔膜的改性研究现状,对共混改性、复合改性、填充改性和离子液体改性等方法进行了评述,采用相关的改性方法可以提高电池隔膜的性能。  相似文献   

8.
为探究加固方法、纤维混合比、黏合剂浓度对锂离子电池隔膜性能的影响,以芳砜纶纤维和低熔点纤维为原料,通过湿法非织造材料生产工艺加工,研究了不同的纤维混合比及不同的黏合剂浓度对锂离子电池隔膜的透气率、孔隙率、吸液率和保液率等方面的影响。结果表明:采用化学黏合加固的锂离子电池隔膜在各种性能方面更为优异,并且黏合剂浓度为3%,烘燥温度为170℃,烘燥时间为30min时,锂离子电池隔膜的透气率为2 969mm/s,孔隙率为96.7%,吸液率、保液率分别为1 303%、1 207%。  相似文献   

9.
简要叙述商用锂离子电池隔膜的制备方法,包括干法拉伸和湿法拉伸。重点介绍纤维基锂离子电池隔膜的制备方法,如熔喷法、静电纺丝法、湿法及纺黏法。此外,列举无机/有机复合膜的制备方法。探讨锂离子电池隔膜的发展趋势及存在问题。  相似文献   

10.
锂离子电池隔膜的性能会影响电池的性能发挥,为了研发高效锂离子电池,应用静电纺技术制作可用于锂离子电池的聚偏氟乙烯纳米隔膜,通过对聚偏氟乙烯(PVDF)的静电纺工艺进行差异化设置,得到隔膜的最佳纺丝工艺参数。  相似文献   

11.
作为MP3、MP4、手机、电脑等各类电子设备的重要组成部分,锂离子电池的应用情况直接影响着设备的状态、功能以及运行情况和寿命,而锂离子电池本身的状态和性能有很大一部分是由其隔膜材料所决定的。基于此,文章则以锂离子电池隔膜材料作为主要研究对象,通过对二者的相关概念进行简要论述,进而对锂离子电池隔膜材料的改性、制备等方面的研究进展予以分析,以期为后续锂离子电池状态、质量的改进与提高奠定良好基础。  相似文献   

12.
锂离子电池具有质量轻、能量密度高、循环寿命长、无记忆效应等优点,广泛应用于电子设备、新能源汽车等领域。作为电池主要组成部分的隔膜材料起着隔离正负极,防止电池发生短路和为锂离子提供通道的作用,其性能与电池的电化学性能和安全性能密不可分。介绍了聚烯烃隔膜存在的问题及改性方法,阐述了静电纺纳米纤维隔膜和耐高温隔膜材料的研究进展,展望了电池隔膜的发展方向。  相似文献   

13.
为了探究熔喷非织造布制备锂离子电池隔膜的可行性,观察其形貌,测试其热收缩性能、拉伸性能、孔隙率、吸液率及电化学性能。结果表明:熔喷工艺隔膜与干法工艺隔膜、湿法工艺隔膜具有相近的孔隙率,都在40%左右,但熔喷工艺隔膜的吸液率为292.53%,远高于干法工艺隔膜的134.47%和湿法工艺隔膜的128.22%;且熔喷工艺隔膜在150℃条件下,几片无收缩。熔喷工艺隔膜的内阻及电化学性能低于干法工艺隔膜,高于湿法工艺隔膜。说明熔喷非织造布制备锂离子电池隔膜,满足锂离子电池隔膜材料的需要,具有一定的可行性。  相似文献   

14.
新型高性能芳纶纤维基锂离子电池隔膜在耐高温、电解液润湿性、机械强度及电化学性能等方面具有一定的优势,得到了研究者的广泛关注。本文系统综述了芳纶纤维基锂离子电池隔膜制备方法,包括静电纺丝法、涂布法、相转化法及造纸法等,对比总结了几种方法的优劣势及最新研究进展,最后探究了芳纶纤维基锂离子电池隔膜研究领域存在的问题,并展望了未来的发展前景。  相似文献   

15.
以玻璃纤维机织物为中间层,聚偏氟乙烯-六氟丙烯(PVDF-HFP)微孔膜为上下层,制备三明治结构的锂离子电池复合隔膜,对其干态与湿态下的力学性能、电解液亲和性、热稳定性及电化学性能等进行测试,并与商品化锂离子电池隔膜Celgard 2400进行对比。结果表明,三明治结构的锂离子电池复合隔膜具有更好的力学性能、电解液亲和性、热稳定性及电化学性能。  相似文献   

16.
静电纺纳米纤维膜被广泛地研究并应用在锂离子电池领域,其中:用作负极材料的包括碳纤维、碳/无机复合材料、(过渡)金属氧化物及锂金属氧化物;用于正极材料的有锂金属氧化物和金属氧化物;隔膜材料主要有聚合物及聚合物/无机物复合隔膜两类。大量的研究表明,静电纺丝纳米纤维膜以其优异的纳米特性在锂离子电池中发挥重要作用。综述最新应用于锂离子电池的正负极以及隔膜的静电纺纳米材料,并对其未来的发展方向进行展望。  相似文献   

17.
《广西轻工业》2019,(4):49-50
复合涂层聚乙烯(PE)锂离子电池隔膜是把氧化铝(Al_2O_3)颗粒涂抹在聚乙烯湿法膜两侧形成的。综合研究复合隔膜形貌、透气特征、吸液率、热稳定性等指标,能够使锂离子电池热安全性能得到明显提高,而涂覆膜也能够有效吸收电解液。选择氧化铝复合聚乙烯膜进行电池组装,不仅能够使隔膜离子电导率得到明显提升,还能够保证电池容量不受影响。  相似文献   

18.
不同类型MH/Ni电池自放电性能研究   总被引:1,自引:0,他引:1  
从电解液组成、正极添加剂和隔膜3个方面入手研究了改善金属氢化物/镍(MH/Ni)电池自放电性能的措施.结果表明,采用丙烯酸接枝或磺化处理的PP隔膜以及采用NaOH电解液代替KOH电解液均可以有效降低电池的自放电率;而正极中加入高温添加剂无明显效果.另一方面,通过降低MH/Ni电池的自放电率可以减缓储存期间电池开路电压下降的速率,延缓CoOOH还原反应的发生,从而在一定程度上降低其容量不可逆衰减率.  相似文献   

19.
利用静电纺丝技术可以制得高比表面积、高孔隙率的纤维及纤维毡状材料,使其在制备锂离子电池隔膜中具有明显的应用优势。综述了采用静电纺丝法制备纳米纤维膜用作电池隔膜的技术特点及其主要影响因素。重点阐述了静电纺隔膜的结构和性能,如膜的形态结构、机械性能、化学稳定性和热稳定性等。  相似文献   

20.
针对动力锂离子电池对隔膜的要求,综述了几种常见的制备方法及其隔膜的性能,重点介绍了不同制备方法的新进展。可以通过不同熔点聚合物的多层复合以及寻找更好的耐高温材料来提高拉伸膜的耐高温性能。溶剂共混和添加无机颗粒可以改善以静电纺丝为代表的干法非织造隔膜的力学性能。超细纤维的复配用以控制湿法非织造隔膜的孔径大小及其分布。复合膜作为一种新型的动力锂电隔膜,展现出了良好的均一性、低的热收缩率以及较好的耐高温性能。核心在于寻找合适的复合手段和把不同复合材料协同优势发挥到最大化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号