首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
为了探究山药切片的真空干燥特性,建立干燥模型。在不同干燥温度(40、50、60、70、80 ℃)、真空度(0.03、0.04、0.05、0.06、0.07 MPa)和切片厚度(2、4、6、8、10 mm)条件下进行真空干燥试验,分别利用BP神经网络模型和Weibull分布函数拟合试验数据;并计算有效水分扩散系数、干燥活化能。结果表明:干燥温度(P=7.56×10?11)和切片厚度(P=1.82×10?6)对干燥时间影响显著,真空度对其影响不显著(P=0.32)。验证试验得到BP神经网络模型的平均相对误差为3.08%,低于Weibull分布函数的平均相对误差10.7%,BP神经网络更适合描述山药切片真空干燥过程;有效水分扩散系数为4.0042×10?9~3.4652×10?8 m2/s,温度和切片厚度对其影响较大;活化能为33.802 kJ/mol。该研究可为山药真空干燥生产作业提供理论依据。  相似文献   

2.
目的:优化红枣片干燥工艺,改善产品品质。方法:以红枣片为研究对象,研究转换含水率、红外温度和切片厚度与干燥时间和干燥速率的相关关系,计算红枣片在FD-IRD中水分有效扩散系数随转换含水率、红外温度和切片厚度的变化规律,并根据试验数据计算红枣片FD-IRD的干燥活化能。结果:转换含水率越低,红外干燥时间越短,但过低的转换含水率,会使冷冻干燥时间大幅延长;适当提高红外干燥温度有利于提高水分有效扩散系数;红枣片越薄干燥速率越大,减小切片厚度能够提高水分有效扩散系数,利于缩短干燥时间;前后两段均为降速干燥过程,通过费克第二定律求解得到不同干燥条件下的冷冻干燥和红外干燥的水分有效扩散系数分别为3.39×10-9~9.47×10-9,3.34×10-9~2.01×10-8 m2/s;通过阿尼乌斯公式计算出红外干燥阶段干燥活化能为59.03 kJ/mol。结论:在转换含水率30%,红外温度60℃,切片厚度6 mm的条件下,冷冻—红外组合干燥技术所用干燥时间短、效率高。  相似文献   

3.
为提高马铃薯片的热风干燥效率及品质,控制其干燥过程中的收缩变形,本文研究了不同热风温度(45、55、65、75 ℃)和切片厚度(3、5、7、9 mm)对马铃薯片热风干燥特性曲线、有效水分扩散系数及活化能等指标的影响。结果表明,干燥室内热风温度越高、马铃薯切片厚度越小时,干燥速率越快。在研究范围内,马铃薯片的有效水分扩散系数在5.02×10?10~11.53×10?10 m2/s范围内,其值随热风温度升高或切片厚度减小而增大。此外,研究发现Weibull分布函数能够很好地描述马铃薯片的降速干燥过程和收缩动力学模型。通过Arrhenius方程计算得到马铃薯片的干燥活化能和收缩活化能分别为27.35和46.44 kJ/mol,马铃薯片干燥比收缩消耗活化能少。本研究为马铃薯片在热风干燥加工中水分迁移和体积收缩变化的预测提供了理论依据和技术支撑。  相似文献   

4.
在本研究中,为了探讨热风温度和切片厚度对山楂热风干制动力学的影响,将厚度为2 mm和4 mm的山楂切片置于50~90℃的热风干燥箱内进行干制处理,并采用5种常见食品薄层干燥模型对实验数据进行非线性拟合,通过比较评价决定系数(R~2)、卡方(χ~2)和均方根误差(RMSE)等统计数据确定山楂切片薄层热风干燥过程的最优模型。结果表明:山楂切片薄层热风干燥是内部水分扩散控制的降速干燥过程。Page模型是描述山楂切片薄层热风干燥过程的最优模型。不同干燥条件下有效水分扩散系数Deff和活化能Ea的求解结果表明,有效水分扩散系数Deff随热风温度和切片厚度的增加而增加,在干制温度范围内有效扩散系数的值在2.69×10~(-11)~16.12×10~(-11)m~2/s之间变化。对于切片厚度为2 mm和4 mm的山楂切片,活化能Ea分别为20.43、26.25 k J/mol。  相似文献   

5.
为了提高猕猴桃切片制干品质、缩短干燥时间,采用流化床干燥技术对其进行干燥,研究温度(55,65,75,85℃)、风速(1.5,2.5,3.5,4.5m/s)和厚度(5,10,15mm)对猕猴桃切片热风干燥曲线、水分有效扩散系数以及干燥活化能的影响。结果表明:猕猴桃切片的整个干燥过程属于降速干燥,水分有效扩散系数为1.29639×10-9~4.58994×10-9 m2/s,且随温度、风速的增大而升高,随切片厚度的减少而增大;猕猴桃切片活化能为23.03kJ/mol。对10种常见的干燥动力学模型进行拟合发现,Logarithmic模型效果最佳。  相似文献   

6.
研究乐昌香芋在不同热风温度(50、60、70、80、90℃),不同热速率(1.5、2.0、2.5、3.0 m/s),不同切片厚度(2、3、4、5 mm)下干燥曲线和干燥速率曲线。利用干燥经验模型Logarithmic、Twoterm、Modified page、Henderson and Pabis、WeibullⅠ对干燥过程水分比与干燥时间关系进行模型拟合,以决定系数、残差平方和与加权卡方检验系数判断拟合结果优劣。结果表明,水分比随时间逐渐减少,变化逐渐变缓。香芋干燥过程以降速干燥为主,热风温度70℃时干燥速率最快,干燥时间最短;热风速率2.0m/s时干燥速率较快,有利于节能降耗;切片厚度3mm时干燥速率较快,干燥时间较短。WeibullⅠ模型能很好地描述香芋热风干燥过程,拟合的决定系数均大于0.9979,残差平方和均小于0.00288,加权卡方检验系数均小于1.69×10–4。  相似文献   

7.
目的:提高规模化生产的哈密瓜品质,缩短干燥周期。方法:以不同漂烫时间(0.5,1.0,1.5,2.0,2.5 min)、浸渍液(0.1%,0.2%,0.3%,0.4%,0.5%柠檬酸溶液)预处理哈密瓜切片,并分别研究不同热风温度(35,45,55,65,75℃)、热风速度(0.5,1.0,1.5,2.0,2.5 m/s)和切片厚度(2,4,6,8,10 mm)条件下的哈密瓜切片热风干燥特性和水分扩散系数,拟合不同薄层干燥数学模型。结果:0.4%柠檬酸预处理后得到品质最优的干制产品,热风温度和切片厚度对切片干燥影响较为显著,哈密瓜切片无恒速干燥阶段,有效水分扩散系数为1.1348×10-7~4.9080×10-7 m2/s,活化能为28.15 kJ/mol。结论:哈密瓜切片的最佳热风干燥工艺为热风温度55℃、热风速度2.0 m/s、切片厚度6 mm,Page模型具有最高的R2值和最小的均方根误差,更适于评估和预测哈密瓜热风干燥的水分去除规律。  相似文献   

8.
大野芋薄层干燥特性及收缩动力学模型研究   总被引:3,自引:0,他引:3  
为提高大野芋的品质,缩短干燥时间,控制收缩,研究大野芋在薄层干燥中不同温度(50,60,70,80℃)和切片厚度(4,7,10,13 mm)下的干燥曲线和体积收缩变化规律。研究表明:干燥温度和切片厚度对大野芋干燥时间有显著影响,大野芋薄层干燥水分有效扩散系数在3.2087×10-9~1.5010×10-8m2/s之间;干燥温度和切片厚度均对大野芋收缩率有显著影响,采用较低的干燥温度和较厚的切片厚度能够提高收缩率,减少收缩;Weibull分布函数能够很好地描述大野芋的收缩动力学曲线,拟合效果最优。通过阿伦尼乌斯公式计算得到大野芋干燥活化能和收缩活化能分别为35.33 k J/mol和57.19 k J/mol。本研究结果为大野芋在干燥加工中水分迁移和体积收缩变化的预测、调控提供理论依据和技术支持。  相似文献   

9.
魔芋薄层变温热风干燥特性实验研究   总被引:1,自引:0,他引:1  
在风速0.75 m/s、厚度5、6及7 mm条件下,对魔芋进行温度50→70℃和70→50℃的薄层变温热风干燥实验,分析了变温温度(50→70℃和70→50℃)及芋片厚度(5、6和7 mm)对魔芋干燥速率的影响,用9个数学模型对魔芋变温实验数据进行拟合,计算魔芋的有效水分扩散系数,并将魔芋薄层变温干燥与恒温干燥进行对比。结果表明:变温条件相同时,魔芋的干燥时间随着芋片厚度的增加而增加;最适合魔芋薄层变温干燥特性的模型是Two-term模型;魔芋的有效水分扩散系数D_(eff)随着芋片厚度的增加而增大;在风速及厚度条件相同时,薄层变温干燥的最大干燥速率比恒温干燥的最大速率更高,且由低温后高温(50→70℃)的变温方式效果更好。  相似文献   

10.
探讨不同干燥温度和不同切片厚度条件下番木瓜的热风干燥特性。通过9种数学模型对番木瓜热风干燥试验数据进行拟合,结果表明:同大多数农产品干燥一样,番木瓜热风干燥主要为降速过程。不同干燥温度和物料厚度番木瓜热风干燥的水分有效扩散系数Deff的变化范围分别是1.798 4×10-8~3.323 3×10-8,0.579 3×10-8~2.852 2×10-8 m2/s,由此可以看出番木瓜热风干燥的水分有效扩散系数随着干燥温度和物料厚度的增大而增大;Page模型是番木瓜热风干燥过程的最适模型,平均R2值、SSE值、RMSE值和X2值分别为0.998 1,0.003 3,0.012 4,0.000 2。经回归分析,得到温度、厚度与有效水分扩散系数Deff的关系表达式。研究结果可以为生产实践中预测番木瓜热风干燥的水分变化提供参考。  相似文献   

11.
王迪芬  苑亚  魏娟  张冲  杨鲁伟 《食品工业科技》2021,42(1):144-148,155
为提高苹果片的热风干燥品质,采用超声波和护色剂(0.1%的NaCl、1.0%的蔗糖和0.8%的海藻糖)的预处理方法,并以热风温度、切片厚度和预处理作为试验因素,对苹果片进行热风干燥的正交实验研究并建立了苹果片热风干燥特性的数学模型。结果表明:干燥速率随切片厚度的减少、热风温度的升高而增加,超声波和护色剂都能促进干燥过程;苹果片最佳热风干燥工艺参数为热风温度为60℃,厚度为1.5 mm以及预处理方式为护色剂浸泡预处理;Weibull是模拟苹果片热风干燥特性的最优模型,干燥过程苹果片的有效扩散系数为1.1278×10-8~5.2940×10-8 m2·s-1。此次研究为实际苹果热风干燥提供依据。  相似文献   

12.
猕猴桃热风干燥与冷冻干燥的实验研究   总被引:4,自引:0,他引:4  
本研究对真空冷冻干燥和热风干燥猕猴桃切片进行了对比实验,比较了不同冷冻干燥工艺和热风干燥工艺下猕猴桃VC损失率和干燥速率。实验发现热风干燥实验中,厚度、温度和对流情况三个因素对干燥速率和VC损失率两个指标都有显著影响(p<0.01)。最佳猕猴桃热风干燥工艺条件是:猕猴桃切片厚度取中间值6mm,温度取高值70℃,对流情况取加风。冷冻干燥实验中,厚度、一次干燥温度对干燥速率有显著影响(p<0.05),冻结速率无显著影响。厚度、一次干燥温度和降温速率对VC损失率有显著影响(p<0.05)。最佳猕猴桃真空冷冻干燥工艺条件是:猕猴桃切片厚度取中间值8mm,一次干燥温度-10℃,冻结降温速率取快速冻结。热风干燥的平均干燥速率远远大于冻干实验结果。冷冻干燥的VC损失率大大小于热风干燥过程。  相似文献   

13.
为探讨热风干燥工艺对杏鲍菇产品品质的影响,在不同干燥温度(55、60、65、70、75℃)下对不同厚度(2、3、4、5、6 mm)的杏鲍菇进行了干燥试验,以干燥后产品的复水率为指标,对干制杏鲍菇的品质进行了评价,同时对杏鲍菇干燥动力学模型进行了研究。结果表明:干燥杏鲍菇的最佳温度为65~70℃,切片厚度为4~5 mm,杏鲍菇干片的品质最佳,杏鲍菇干燥动力学特性符合two-term模型,上述参数可为杏鲍菇干制加工提供理论与实践依据。  相似文献   

14.
目的:提高火龙果干制品的品质。方法:基于多孔介质理论和菲克定律,建立火龙果传热传质与固体力学多物理场耦合的数学模型,并研究火龙果在热泵干燥过程中的温度与含水率的变化规律。结果:考虑体积收缩的模型计算精度更高,达到干燥标准时,模拟值与试验值的最大相对误差为9.2%。火龙果片在干燥初期温度分布由表面向中心逐渐降低,后期达到平衡,而水分分布呈相反趋势。火龙果片在热泵干燥过程中的温度、湿度梯度力是导致其收缩变形的主要因素。不同干燥温度和切片厚度下火龙果片的干基含水率的计算值与试验值变化趋势一致,相对误差均<10%,证明了模型的准确性。结论:试验建立的多物理场耦合的数学模型能够准确模拟火龙果热泵干燥过程。  相似文献   

15.
南瓜干热风干燥工艺的研究   总被引:1,自引:0,他引:1  
以南瓜为原料,采用热风干燥方法,在不同的干燥温度(60℃、70℃、80℃)、不同的切片厚度(2mm、4mm、6mm)、不同的热烫时间(30s、45s、60s)条件下,记录南瓜片干燥所需的时间,并探究干燥温度、热烫时间和切片厚度对南瓜干感官质量(包括色泽和硬度)的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号