首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A survey at the European level was initiated on the quantification of bisphenol-A-diglycidyl-ether (BADGE) in canned fish in oil in order to assess the exposure of BADGE. A total of 382 canned fish samples were collected from all 15 Member States and Switzerland and analysed for BADGE in fish. The fish was extracted first with hexane and reextracted with acetonitrile, followed by a membrane filtration and reverse phase HPLC analysis with fluorescence detection. The analysis of the fish showed that about 3% of the samples contained BADGE at a level above 1mg/kg. The samples exceeding the limit by a larger margin were mostly from anchovy cans and cans manufactured in 1991-1995.  相似文献   

2.
Varnishes used for the inner coatings of food cans are often based on epoxy resins or vinylic organosols. The epoxy resins can be produced from bisphenol A (BPA) and bisphenol F (BPF), and these also contain bisphenol A diglycidyl ether (BADGE) or bisphenol F diglycidyl ether (BFDGE) as stabilising components. These compounds may break down during storage and also by the influence of food simulants. The stability of BADGE and BFDGE were studied using reverse-phase gradient high-performance liquid chromatography (RP-HPLC) with ultraviolet detection (UV). Three experimental conditions for spiked simulants were compared: (1) the storage at 25 °C (C1), (2) the storage at 40 °C (C2) and (3) the storage at 25 °C after 15 min heating at 120 °C (C3). Distilled water, 3% acetic acid and 10% ethanol were used as food simulants. It was observed that BADGE is more stabile than BFDGE. The loss of BADGE and BFDGE were minimal in 10% ethanol (39 and 46% at 25 °C, 60 and 69% at 40 °C, respectively) and highest in 3% acetic acid (60 and 63% at 25 °C, 76 and 82% at 40 °C, respectively). At experiment (C3), the hardest conditions, significant degradation was not shown in comparison with conditions (C1) and (C2), contrariwise BADGE and BFDGE in 10% ethanol were minimal degradated at conditions (C3) from all these experiments (loss of 5 and 8%, respectively).  相似文献   

3.
Bisphenol-A diglycidyl ether (BADGE) is used as an additive or starting agent in coatings for cans. The presence of hydrochloric acid in the organosol (PVC-based) lacquers results in formation of chlorohydroxy compounds of BADGE. These compounds, as well as BADGE itself, are potential migrants into the preserved food and are of toxicological concern. In the present investigation the presence of BADGE and the chlorohydroxy compounds (BADGE.HCl and BADGE.2HCl) in various kinds of canned foods from 30 brands have been determined by HPLC with fluorescence detection. BADGE was found in levels up to 5.1mg/kg in the food and only in food from cans containing BADGE.HCl and BADGE.2HCl in the lacquers. BADGE was found both in fish in oil and in fish in tomato sauce, however, the highest amounts were found in the fatty foodstuffs. BADGE.HCl and BADGE.2HCl were found in concentrations up to 2.4mg/kg and 8.3mg/kg, respectively. Unlike BADGE, BADGE.2HCl was found in similar concentrations in fish in oil and in fish in tomato sauce. In aqueous and acidic foodstuffs BADGE readily hydrolyses into mono- and dihydrolysed products (BADGE.H2O and BADGE.2H2O). In this study BADGE.H2O was not found in any food sample, whereas BADGE.2H2O was found in levels up to 2.6mg/kg. The Scientific Committee for Food (SCF) of the European Commission has proposed that a limit of restriction of 1mg/kg food shall include BADGE itself and BADGE.H2O, BADGE.HCl, BADGE.2HCl and BADGE.HCL.H2O. The present results indicate that the migration of BADGE.HCl and BADGE.2HCl, compounds with almost no data on toxicity, implies a greater problem than BADGE.H2O and BADGE.2H2O.  相似文献   

4.
A new method for the simultaneous determination of bisphenol A-diglycidyl ether (BADGE), bisphenol F-diglycidyl ether (BFDGE) and their hydrolysis and chlorohydroxy derivatives in canned foods is presented. Oily and aqueous food samples were extracted with tert-butyl methyl ether and acetonitrile, respectively. The compounds in both extracts were determined by using reverse-phase gradient high-performance liquid chromatography with fluorescence detection. Optimization of extraction and chromatographic determination is outlined in detail. After validation the method was used to analyze various canned food samples, such as tuna and sardine in oil, vegetables, fruit cocktails, etc. In none of the samples were significant amounts ( >100 μg/kg) of BADGE or BFDGE found, whereas in most samples BADGE/BFDGE chlorohydroxy compounds were detected. These originate most probably from the use of organosol varnishes instead of epoxy resins. Risk assessment and regulations of these compounds by the European Union are urgently needed. Additionally, the syntheses and characterization of the not available standard compounds bisphenol A-p-glycidyl-p′-(3-chloro-2-hydroxypropyl) ether (BADGE.HCl) and bisphenol A-p-(2,3-dihydroxypropyl)-p′-(3-chloro-2-hydroxypropyl) ether (BADGE.HCl.H2O) are presented. Received: 28 July 1999 / Revised version: 29 October 1999  相似文献   

5.
国内市场上罐装啤酒中双酚类物质迁出量调查   总被引:1,自引:0,他引:1  
建立并利用固相萃取-高效液相-荧光法对国内市场上31种罐装啤酒中双酚物的含量进行了调查。方法的检测限为0.02~0.09μg/L,在0.02~50.00μg/L的检测范围内相关系数大于0.99,加标回收率和标准差分别为80.67%~101%和1.01%~4.84%。样品中除双酚E(BPE)没有检出外,双酚A(BPA)、双酚A二缩水甘油醚(BADGE)、双酚F二缩水甘油醚(BFDGE)、双酚B(BPB)和双酚F(BPF)的平均检出浓度分别为2.99、0.41、0.18、0.12、0.12μg/L,检出率分别为100%、83.9%、6.4%、12.9%和6.4%。BPA和BADGE是罐装啤酒中存在的最主要的双酚物,其平均每日摄入量分别估计为0.0160、0.0022μg/kg.bw.d,低于欧盟关于BPA50μg/kg.bw.d的规定。样品中BPA没有超过欧盟规定的0.6mg/L,BADGE的迁移也未高于9mg/L,但是BFDGE的检出是不允许的。目前尚无关于BPF、BPE和BPB的迁移限值。  相似文献   

6.
A straightforward method was established for the determination of migration contaminants in olive oil with a special focus on the two can-coating migration compounds bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE). The preferred sample preparation was a single liquid-liquid extraction of compounds from the oil into 20% (v/v) methanol in acetonitrile, followed by clean-up with solid-phase extraction on aminopropyl bonded to silica. This purification procedure selectively removed all free fatty acids from the extracts without removing phenolic compounds of interest. The solid-phase extraction columns were used many times by implementing a procedure of washing out the strongly retained fatty acids with 2% acetic acid in methanol. Gas chromatography coupled with full scan (m/z 33-700) electron ionization mass spectrometry was used for the determination of several model compounds in olive oil samples. BADGE and BFDGE could be determined in the 0.05-2 mg kg(-1) range in oil samples with a relative SD of <6% (six replicates). The method was used in an enforcement campaign for the Norwegian Food Control Authority to analyse vegetable oil samples from canned fish-in-oil.  相似文献   

7.
A new and simple liquid chromatography tandem mass-spectrometry method for the determination of different bisphenol A (BPA) derivatives such as bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their reaction products with water and hydrochloric acid in different fish food products was developed. The extraction procedure and the chromatographic conditions were optimised for complex food matrices such as fish products. Food samples were homogenised and extracted with a 1:1 solution of acetonitrile-hexane, the solvent was eliminated in a N(2) stream and the extract was reconstituted with 0.5mL of a 0.01M solution of ammonium formate. The sample solution obtained was directly measured by LC-MS/MS without any further purification under the developed conditions. The use of a mobile phase composed by ammonium formate-methanol in a binary gradient mode produced [M+NH(4)](+) aducts for the different BADGEs and BFDGEs. These aduct's fragmentations were employed for the LC-MS/MS quantification of BPA derivatives in canned fish samples. The results of the validation were appropriate: the method was linear for BADGE and its hydrolysed derivatives up to 1000μgkg(-1), for the remaining compounds linearity achieved up to 100μgkg(-1). Quantification limits were in the range 2-10μgkg(-1). RSD (intra and inter-day) was 6-12% and the recovery was comprised between 89% and 109%. Under the optimised conditions, the chromatographic separation was performed in 8min per sample. The method was applied to the determination of BADGE, BFDGE and their reaction products in different samples of canned fish from Spanish origin. Migration results obtained were in compliance with the EU regulations.  相似文献   

8.
BADGE.2HCl and BFDGE.2HCl were determined in 28 samples of ready-to-drink canned coffee and 18 samples of canned vegetables (10 corn, 5 tomatoes and 3 others), all from the Japanese market. HPLC was used as the principal analytical method and GCMS for confirmation of relevant LC fractions. BADGE.2HCl was found to be present in one canned coffee and five samples of corn, BFDGE.2HCl in four samples of canned tomatoes and in one canned corn. No sample was found which exceeded the 1mg/kg limit of the EU for the BADGE chlorohydrins. However the highest concentration was found for the sum of BFDGE.2HCl and BFDGE.HCl.H2O at a level of 1.5mg/kg. A Beilstein test confirmed that all cans containing foods contaminated with BADGE.2HCl or BFDGE.2HCl had at lest one part coated with a PVC organosol.  相似文献   

9.
The effect of heat processing, storage time and temperature on the migration of bisphenol A (BPA) from organosol and epoxy can coatings to a fatty-food simulant and tuna was determined. Analyses of BPA were performed by RP-HPLC with fluorescence detection. Four migration experiments, performed between 2000 and 2003, using cans with organosol, epoxy and a combination of both types of coatings were performed under different processing conditions and storage times. Migration levels as high as 646.5 microg kg(-1) BPA from an organosol coating of tuna fish cans were found using a fatty-food simulant following the heat processing of the simulant-filled cans. Levels ranging from 11.3 to 138.4 microg kg(-1) BPA from tuna cans coated with an epoxy resin migrated to the fatty-food simulant during 1 year at 25 degrees C. Levels of BPA migration into a fatty-food simulant from thermally processed and stored tuna cans coated with a combination of organosol and epoxy resins and from vegetable cans coated with an epoxy resin were below the limit of quantitation of 10.0 microg kg(-1). Migration of BPA to tuna ranged from <7.1 to 105.4 microg kg(-1) during long-term storage at 25 degrees C. BPA levels in tuna cans purchased from three local supermarkets ranged from <7.1 to 102.7 microg kg(-1). The highest migration levels were found following heat processing at temperatures as high as 121 degrees C and at times as long as 90 min. Coatings from different can batches can give different levels of BPA migration. The migration levels of BPA found in this work are below the present European Union migration limit, except the 646.5 microg kg(-1) found after the commercial heating process was applied to the simulant-filled cans coated with the organosol resin.  相似文献   

10.
为了调查国内食品金属罐中双酚类物质的迁移水平,本文建立了同时测定食品金属罐中14种双酚类物质迁移量的高效液相色谱法,并研究了杀菌过程对双酚类物质迁移的影响及食品金属罐中双酚类物质的迁移规律。结果表明,14种双酚类物质在4种食品模拟物(4%体积乙酸、10%体积乙醇、50%体积乙醇和异辛烷)中线性关系良好,加标回收率为83.67%~107.05%,精密度范围为2.32%~7.67%,该方法的精密度和准确度较好,可用于食品金属罐中14种双酚类物质迁移量的检测分析。对市场上9种罐头和饮料用金属罐中的14种双酚类物质的迁移量进行了同时测定,发现有7种双酚类物质检出,无双酚A及其类似物的检出。基于欧盟限量标准要求,发现午餐肉罐头中的双酚A-(2-3-二羟基丙基)缩水甘油醚(BADGE·H2O)、牡蛎葛根饮料中的双酚A-二(2-3-二羟基丙基)醚(BADGE·2H2O)和黑莓罐中的双酚F-(2-3-二羟基丙基醚)(BFDGE·2H2O)存在一定的迁移风险。此外,杀菌过程影响食品金属罐中双酚类物质的迁移种类和迁移量。迁移试验结束后,经过杀菌的金属罐中仅检测出BADGE·2H2O,而未经杀菌的金属罐中同时检测到BADGE·2H2O和双酚A-(3-氯-2羟丙基)(2-3-二羟基丙基)缩水甘油醚(BADGE·H2O·HCl)。另外,食品模拟物的类型影响着双酚类物质的迁移量和迁移种类,且随着迁移温度的升高和迁移时间的增加,双酚类物质的迁移量逐渐升高直至平衡。  相似文献   

11.
本实验应用高效液相色谱-电喷雾串联质谱法分析检测肉类罐头食品中双酚A二缩水甘油醚(BADGE)及其衍生物的残留,重点研究了肉类罐头中的内容物、存储时间(6个月、9个月、12个月)以及存储温度(4、20、100℃)对双酚A二缩水甘油醚(BADGE)及其衍生物的迁移量的影响,单因素方差分析(One-way ANOVA)检验实验结果表明,不同内容物罐头中从内壁涂层迁移至样品的BADGE及其衍生物存在显著性差异(p<0.05),Student-Newman-Keuls法检验表明存储12个月后目标化合物的迁移量与6个月、9个月存在显著性差异,存储温度为4、20℃时化合物迁移量没有显著差异,但是罐头加热到100℃后目标化合物迁移量是最大的。  相似文献   

12.
 Bisphenol A diglycidyl ether (BADGE) is determined in canned oily foods from Austria using a new simplified HPLC method. Samples are extracted with pentane, back extracted with methanol, and finally dissolved in the mobile phase (cyclohexane/tert–butyl methyl ether). Separation is performed on a normal-phase HPLC column using fluorescence detection. Verification of the BADGE-containing peak is carried out by using off-line GC-MS. Additionally, the synthesis and determination of BADGE hydrolysis products, Bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE.2H2O) and Bisphenol A glycidyl (2,3-dihydroxypropyl) ether (BADGE.H2O) are presented. From 67 analyzed cans, containing various fatty meat or fish products, 16% were above the maximum quantity of 1 mg/kg tolerated by the European Community, 45% were in the range between 0.1–1 mg/kg, 24% between 0.02 and 0.1 mg/kg, and in 15% the BADGE concentrations were below the detection limit of 0.02 mg/kg. The hydrolysis product BADGE.H2O was not detected in any sample, whereas BADGE.2H2O was found in some samples up to a concentration of 0.5 mg/kg. Received: 11 May 1998 / Revised version: 1 July 1998  相似文献   

13.
A gas chromatographic (FID) method is described which aims at the quantitative compositional analysis of the additives in plasticized PVC, particularly the plastisols used as gaskets for lids of glass jars. An extract of the PVC is analysed directly as well as after transesterification to ethyl esters. Transesterification enables the analysis of epoxidized soya bean and linseed oil (ESBO and ELO) as well as polyadipates. For most other additives, the shifts in the chromatogram resulting from transesterification is used to confirm the identifications made by direct analysis. In the gaskets of 69 lids from the European market used for packaging oily foods, a broad variety of plastisol compositions was found, many or possibly all of which do not comply with legal requirements. In 62% of these lids, ESBO was the principal plasticizer, whereas in 25% a phthalate had been used.  相似文献   

14.
鲍洋  汪何雅  李竹青  姚卫蓉 《食品科学》2011,32(21):261-267
鉴于双酚A及其他双酚类物质作为食品罐内涂层材料有潜在的毒性与危害,中国、欧盟、美国等国家均已严格限制它们在金属食品罐内涂料中的使用。本文介绍双酚A、双酚A二缩水甘油醚、双酚F、双酚F二缩水甘油醚的结构、应用、危害、检测方法及迁移结果,并简述固相萃取在样品前处理中的应用。  相似文献   

15.
2,2-Bis(4-hydroxyphenyl)propane bis(2,3-epoxypropyl) ether (BADGE) is used in the manufacture of lacquers for coating the inside of food and beverage cans. In June 1996 the EC Scientific Committee for Food temporarily increased the specific migration limit applying to BADGE to 1 mg/kg pending consideration of additional toxicological data. In order to find out if there is migration of BADGE from can coatings into foods, a 'worst case' sampling exercise has been conducted to survey those canned foods where the propensity for migration of BADGE was judged to be highest. The foods surveyed include canned fish in oil, meat and milk and, altogether, BADGE was determined in 181 retail samples. Analysis for BADGE was conducted, in duplicate, by HPLC with fluorescence detection with confirmation of BADGE identity by GC/MS analysis using selected ion monitoring. BADGE was found at levels exceeding 1 mg/kg in seven of the 15 canned anchovy samples and five of the 22 sardine samples purchased during the period September 1995-July 1996. Infrared analysis of the can coatings provided strong evidence that the higher BADGE levels found were associated with use of PVC organosol lacquers, although in some cases cans coated with organosols gave low BADGE results. For canned sardine samples found to contain greater than 0.5 mg/kg BADGE in the total contents, a replicate can was opened and separate analyses performed on the drained fish and the oil. The results clearly showed that BADGE concentrations in the oil were about 20 times higher than in the drained fish. Further samples of canned sardines and anchovies were purchased in June/July 1997 and, in all cases, BADGE levels were found to be below 1 mg/kg. In the other retail canned foods, BADGE was not detectable (DL = 0.02 mg/kg) or detected at concentrations well below the temporary SML of 1 mg/kg.  相似文献   

16.
Causes of spoilage of thermally processed fish in Morocco   总被引:1,自引:0,他引:1  
Of 946 cans of fish suspected of being spoiled, which were collected from local stores and canneries in Morocco, 484 cans (51%) had major container defects. Leaking seams at the manufacturer's end and droops and vees on the canner's end were the most prevalent defects (36 and 28%, respectively). Upon microbiological analysis of 256 cans, viable micro-organisms were recovered from 168 cans, of which 72% contained typical leaker spoilage organisms, while 28% contained typical underprocessing spoilage organisms. Thermophilic organisms were found in association with other organisms in half of the cans. The more severe the swell, the greater were the chances of recovering micro-organisms. The scoring system of Davidson & Pflug (1981) indicated that 16% and 71% of the cans had seams of questionable and poor quality, respectively, and these had a potential for leakage. The most probable cause for spoilage was determined: leakage, 80%; non-microbial swells, 10%; underprocessing, 10%.  相似文献   

17.
An improved migration test was developed for determination of trace amounts of epichlorohydrin from internal can coatings. Eight kinds of sample cans, coated mainly with epoxy resin, for foods and beverages were prepared, and both their bodies and lids were tested for migration as follows. A body was filled with n-pentane and soaked for 2 hours at 25 degrees C. A lid was soaked in n-pentane (2 mL/cm2) for 2 hours at 25 degrees C. The test solution was analyzed by GC-FID and GC/MS using two DB-WAX capillary columns with different inside diameters. The limits of quantitation were 0.05 microgram/mL by GC-FID and 0.02 microgram/mL by GC/MS with selected ion monitoring. Recoveries of spiked epichlorohydrin were 99.9-104.5% at the level of 0.05 microgram/mL and 0.5 microgram/mL, with high precision. In this study, no epichlorohydrin was found to have migrated from any of the bodies and lids.  相似文献   

18.
Comparative heating studies were conducted for three products in 211 × 214 retortable plastic containers with double-seamed metal lids and in similar sized 211 × 300 metal cans. Plastic cans heated slower than metal cans in both steam and water. Orientation of the metal lid (up or down) influenced heating and the location of the slowest-heating zone. For corn in brine heated in steam, Fo values for the heating portion of the process were 6.5, 4.2, and 5.0 using the metal can, and the plastic cans oriented with lid up and lid down, respectively. Similar differences were obtained for cans of water and a conduction-heating product. The heating medium and headspace in the container only slightly influenced the Fo value delivered by the thermal process.  相似文献   

19.
We and others recently began studying brominated flame retardant levels in various matrices in the US including human milk and other food. This paper reviews the food studies. In our studies, ten to thirteen polybrominated diphenyl ether (PBDE) congeners were measured, usually including BDE 209. All US women's milk samples were contaminated with PBDEs from 6 to 419 ng/g, lipid, orders of magnitude higher than levels reported in European studies, and are the highest reported worldwide. We compared our market basket studies of meat, fish and dairy products with other US food studies of meat and fish. US studies showed somewhat higher levels of PBDEs than reported elsewhere. Fish were most highly contaminated (median 616 pg/g), then meat (median190 pg/g) and dairy products (median 32.2 pg/g). However, unlike some European countries where fish predominates, dietary intake of PBDEs in the US is mostly from meat, then fish and then dairy products. Broiling can decrease the amount of PBDEs per serving. We also measured levels of hexabromocyclododecane (HBCD), another brominated flame retardant, in human milk. The levels are lower than PBDEs, 0.16-1.2 ng/g, similar to European levels, unlike PBDEs where US levels are much higher than European levels.  相似文献   

20.
The occurrence of residues of ethoxyquin (EQ) and ethoxyquin dimer (DM) from fish feeds in the liver and muscle of farmed salmon and steelhead was studied. For quantitative analysis of DM, the tissue was partially hydrolyzed with 50% NaOH, and then the lipid and antioxidant residues were extracted with hexane. After solvent removal and recovery into acetonitrile, DM was determined by reversed‐phase high‐pressure liquid chromatography (HPLC) with a fluorescence detector, with the excitation wavelength set at 360 nm and the emission wavelength at 440 nm. The mobile phase was acetonitrile:0.01M ammonium acetate (80:20, v:v). The EQ levels were very low, but the DM levels were higher. The recoveries from the spiked samples were 88 ± 4% for DM. Sample site determinations indicated that the DM residue level could be associated with depot fat except in the liver, where the tissue content of DM was 60% to 70% less. Similar results appear satisfactory for ethoxyquin extracted from fish oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号