首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 493 毫秒
1.
《广西轻工业》2013,(5):42-43
研究以离子液体[Bmim]BF4作为催化剂和溶剂,溴乙烷和无水乙酸钠为原料合成乙酸乙酯。在实验过程中,考察了反应温度、反应时间、原料配比、催化剂用量等因素对反应的影响,结果表明:该反应条件温和、收率高、产品提纯过程得到了很大的简化、离子液体易回收能重复利用。n(乙酸钠)∶n(溴乙烷)=3.0∶1,离子液体用量为5mL,所需的温度65℃,反应时间3h,乙酸乙酯的产率达65.7%,离子液体可以重复使用4次,催化活性基本不变。  相似文献   

2.
以浓硫酸为催化剂,催化油酸内酯化反应合成硬脂酸内酯,并利用GC-MS对样品组成进行分析。以油酸转化率和硬脂酸内酯产率为指标,通过单因素实验考察催化剂用量、反应时间、反应温度和溶剂种类对浓硫酸催化油酸内酯化反应合成硬脂酸内酯的影响,并以硬脂酸内酯的产率为响应值,采用响应面分析法进行优化。得到硬脂酸内酯的最佳合成条件为催化剂用量43.6%、反应时间6.8 h、反应温度45℃、溶剂二氯甲烷,在此条件下硬脂酸内酯的产率达81.20%,含量为80.42%。  相似文献   

3.
以新型酸性离子液体1-丁基喹啉硫酸氢盐([BQu]HSO4)为催化剂催化月桂酸与甲醇酯化反应制备生物柴油工艺研究,详细考察了离子液体用量、醇酸摩尔比、反应时间及反应温度等因素对月桂酸甲酯产率的影响。在单因素实验基础上利用响应面分析法优化月桂酸甲酯的最佳制备工艺条件为:离子液体用量为月桂酸质量的1.3%,甲醇与月桂酸摩尔比为2.8:1,反应时间3.2 h,反应温度373 K,此条件下生物柴油产率为96.3%,该结果与模型预测值基本相符。最佳条件下,制备月桂酸甲酯反应的活化能为25.25 kJ/mol,动力学方程为: 。  相似文献   

4.
选择性合成高纯度甘油单硬脂酸酯   总被引:1,自引:0,他引:1  
以硬脂酸甲酯和保护甘油的3-位羟基选择性地进行酯交换反应,再经过水解得到高纯度甘油单硬脂酸酯。探讨了除水方式、催化剂、反应温度、时间及原料配比对缩酮和酯交换反应的影响。合适的反应条件为:保护甘油与硬脂酸甲酯的摩尔比1.5∶1,催化剂K2CO3/硬脂酸甲酯1%(W/W),反应时间6 h,反应温度140℃。在较佳反应条件下产率达到91.2%。在酯交换反应后处理过程中选用乙酸乙酯代替乙醚做溶剂,提高了合成过程的可操作性。  相似文献   

5.
根据油脂的结构特点,研制了复合碱性离子液体催化剂;以三油酸甘油酯与甲醇的酯交换反应为模型,对酯交换反应的油醇摩尔比、反应时间、反应温度以及催化剂循环使用性进行了考察,并研究了该催化剂催化餐饮废弃油制备生物柴油的效果。结果表明:在油醇摩尔比为1∶9、反应时间为5 h、反应温度为120℃、催化剂用量为5%的条件下,三油酸甘油酯转化效果最佳,油酸甲酯产率高达96.2%;催化剂循环使用7次后油酸甲酯产率仍然保持在80%以上;在相同反应条件下,餐饮废弃油转化为生物柴油的产率最高可达93.6%。  相似文献   

6.
根据油脂的结构特点,研制了复合碱性离子液体催化剂;以三油酸甘油酯与甲醇的酯交换反应为模型,对酯交换反应的油醇摩尔比、反应时间、反应温度以及催化剂循环使用性进行了考察,并研究了该催化剂催化餐饮废弃油制备生物柴油的效果。结果表明:在油醇摩尔比为1∶9、反应时间为5 h、反应温度为120℃、催化剂用量为5%的条件下,三油酸甘油酯转化效果最佳,油酸甲酯产率高达96.2%;催化剂循环使用7次后油酸甲酯产率仍然保持在80%以上;在相同反应条件下,餐饮废弃油转化为生物柴油的产率最高可达93.6%。  相似文献   

7.
以K2CO3为催化剂,DMSO作溶剂,由蔗糖和菜籽油醇解所得脂肪酸甲酯制备了非离子表面活性剂蔗糖脂肪酸酯(Sucrose fatty acid esters,SE),考察了反应温度、反应时间、酯糖比、催化剂用量对试验结果的影响,确定了最佳的合成工艺条件。试验结果表明:反应温度130℃,反应时间7h,酯糖摩尔比为3.0∶1,催化剂用量为反应物总量的4 wt%时,菜籽油蔗糖酯的产率可高达66.7%,临界胶束浓度(CMC)为0.006mol/L,表面张力为32.4mN/m,稳泡能力为8.0/6.5mm/mm(5min后),乳化力为30s,浊点指数为14.90mL,HLB值为14.2。  相似文献   

8.
研究秸秆在苯酚中[Hmim]HSO4酸性离子液体的催化液化,使用离子液体为催化剂,苯酚为溶剂,将秸秆直接液化,考察原料配比、反应时间、反应温度以及催化剂用量对秸秆直接液化的实验产率和残渣率影响。得到的最佳工艺条件是:苯酚和稻草粉末的配比10:1,温度150℃,时间1h,催化剂用量0.5g,在这样的反应条件下得到的产率不低于84.57%。  相似文献   

9.
无溶剂法合成蔗糖酯的工艺研究   总被引:5,自引:0,他引:5  
以蔗糖、植物油为原料,乙醇钠为催化剂,脂肪酸皂及SE为促进剂,在均相熔融状态下进行酯交换反应合成蔗糖酯。优化的工艺条件为:蔗糖∶脂肪酸乙酯(摩尔比)=1∶0.75、催化剂用量为1.5%、促进剂用量为10%、反应温度135℃、反应时间2.5h、反应压力≤690Pa,产率达到70%~75%,产品质量符合GB8272087标准。  相似文献   

10.
用酸化镁碱沸石(H~+-Ferr)作催化剂催化油酸异构化得到异构油酸,再经过加氢制备异硬脂酸。以油酸转化率和异硬脂酸产率为指标,通过单因素实验,考察了催化剂用量、反应时间、反应温度和加水量对油酸异构化的影响;并以异硬脂酸产率为响应值,采用响应面法对各因素进行优化。获得的最优异构化反应条件为:催化剂用量(占油酸质量)5.33%,反应时间6.83 h,反应温度273.5℃,加水量(占油酸质量)3.31%。在最优条件下,异硬脂酸产率可达81.92%,产物中异硬脂酸含量为77.76%。  相似文献   

11.
冰醋酸和异戊醇在离子液体[(C2H5)3NH][HSO4]的催化作用下,合成香料乙酸异戊酯.通过正交试验优化反应条件,考察反应时间、反应温度、醇酸摩尔比、离子液体用量4个因素对产率的影响.优化的最佳反应条件为:冰醋酸0.02mol,反应时间4h,反应温度90℃,醇酸摩尔比0.9∶1,离子液体用量2g,产率达到78.1%.离子液体可循环使用4次,催化活性基本不变.  相似文献   

12.
研究了对甲苯磺酸铜催化丙酸与乙醇的酯化反应,考察了醇酸摩尔比、催化剂用量、反应时间对酯化率的影响。实验结果表明,其较优条件为:丙酸0.1mol,醇酸摩尔比1.5:1,催化剂用量1.8mol%(基于丙酸的摩尔百分数),回流温度下反应2.0h,在此条件下酯化率可达93.6%。反应结束后对甲苯磺酸铜经过简单的相分离就可重复使用,无需再生,兼有均相和多相催化剂的优点。  相似文献   

13.
采用溶胶-凝胶法制备系列大表面金属氧化物,并以其为催化剂催化棕榈酸与甲醇反应制备生物柴油棕榈酸甲酯,同时考察了催化剂种类、醇酸摩尔比、催化剂用量、反应时间及反应温度等因素对酯化反应的影响。研究结果表明,金属氧化物CeFeTiO催化剂表现出最好的催化酯化活性,强酸性及大的比表面积是其具有高活性的原因;以CeFeTiO为催化剂,利用响应面分析法优化所得棕榈酸甲酯的产率为93.2%,结果与模型预测值基本相符。优化条件下,合成棕榈酸甲酯反应的活化能为22.18 kJ/mol,反应级数为1.54,动力学方程为: 。  相似文献   

14.
以硅胶固载N,N-二甲基苄胺丙基磺酸基硫酸氢盐离子液体([DMBPSH]HSO_4/SG)为催化剂,进行棕榈酸与甲醇酯化制备生物柴油工艺研究,考察了醇酸摩尔比、催化剂用量、反应时间及反应温度等因素对棕榈酸甲酯收率的影响。研究表明,10%[DMBPSH]HSO_4/SG催化剂具有最好的催化酯化活性;以10%[DMBPSH]HSO_4/SG为催化剂,利用响应面分析法优化生物柴油的最佳制备工艺条件为:醇酸摩尔比12.6∶1,催化剂用量为棕榈酸质量的5.3%,反应时间2.3 h,温度368 K,此条件下,棕榈酸甲酯的收率为97.2%,该结果与模型预测值基本相符。最佳条件下,棕榈酸甲酯合成反应的活化能为15.89 kJ/mol,动力学方程为:■。  相似文献   

15.
In this work, high fatty acid esters of corn starch were synthesized by reacting the starch with fatty acid methyl ester using 1‐butyl‐3‐methylimidazolium chloride (BMIMCl) ionic liquid (IL) as reaction media. The effect of reaction variables such as the catalyst amount, molar ratio of fatty acid methyl ester/anhydroglucose unit (AGU) in starch, pyridine/AGU molar ratio, reaction temperature, as well as reaction time on the degree of substitution (DS) of starch esters was investigated. The experimental results showed that the DS value of the obtained starch esters could be varied depending on the process conditions. In the optimum reaction condition, the achieved maximum DS of starch laurate and starch stearate was 0.37 and 0.28, respectively, at a reaction temperature of 110°C for starch laurate and 120°C for starch stearate for a reaction duration of 2 h. Furthermore, the starch esters were characterized by FTIR, SEM, and X‐ray diffractometry (XRD) techniques, respectively. Results from FT‐IR spectroscopy suggested that the hydroxyl groups in the starch molecules were converted into ester groups. SEM and XRD studies showed that the morphology and crystallinity of starch esters were disrupted largely in the IL medium under the reaction conditions.  相似文献   

16.
Brφnsted酸性离子液体催化合成油酸甲酯的研究   总被引:2,自引:0,他引:2  
合成并表征了N-甲基-2-吡咯烷酮硫酸氢盐([Hnmp]HSO4)、N-甲基咪唑硫酸氢盐([Hmim]HSO4) 2种阴离子Brφnsted酸性离子液体,考察了这2种离子液体在催化油酸和甲醇酯化反应中的催化活性.结果表明,离子液体的催化活性与其酸性密切相关;当离子液体[Hnmp]HSO4用量为油酸质量的5%,n(甲醇):n(油酸)为1.5:1,反应温度75 ℃,反应时间3 h时,酯化率可达98%以上.反应结束后离子液体与酯化产物成两相,而且离子液体[Hnmp]HSO4重复使用5次,仍有较高的催化活性.  相似文献   

17.
Br?nsted酸性离子液体催化合成辛酸甘油酯的研究   总被引:1,自引:1,他引:0  
以双磺基的Brnsted酸性离子液体1-磺酸丁基-3-甲基咪唑硫酸氢盐[MIm(CH2)4SO3H][HSO4)]催化辛酸与甘油酯化合成低热量的中碳链三酰甘油,研究了催化剂用量、酸醇物质的量比、反应温度、反应时间对酯化反应的影响,在最优条件下考查了工艺稳定性及催化剂重复使用性能。结果表明,[MIm(CH2)4SO3H][HSO4]具有较高的酯化催化活性和重复使用性能。优化的合成辛酸甘油酯的工艺条件为:辛酸甘油物质的量比为3.5∶1,催化剂用量为底物质量的1%,反应温度160℃,反应时间6 h。在此条件下,酯化率达85%,三酰甘油质量分数达到80%。催化剂重复使用5次,仍保持90%的催化活性。  相似文献   

18.
以蔗糖为原料,固体SO42-/TiO2-ZrO2为催化剂,以水为溶剂制备乙酰丙酸。研究了浸渍用硫酸浓度和催化剂焙烧温度对催化剂活性的影响,并探讨了不同反应条件及催化剂重复使用次数对乙酰丙酸得率的影响。用XRD和NH3-TPD对使用前后的催化剂的结构和酸性进行了表征。实验结果表明,1.0 mol/L硫酸浓度浸渍,550℃焙烧3 h的催化剂活性较强。在催化剂投加量为1.0 g,反应温度为190℃的条件下反应1 h,乙酰丙酸摩尔得率高达50.0%。回收的SO42-/TiO2-ZrO2催化剂焙烧后在多次重复使用过程中仍然表现出较好的催化活性。  相似文献   

19.
应用响应面法优化丁酸环己酯的制备   总被引:1,自引:1,他引:0  
选取反应时间、酸醇物质的量比、催化剂用量和带水剂用量4个因素进行中心组合设计,运用响应面法对酸性离子液体催化制备丁酸环己酯的工艺参数进行了优化。试验结果表明,离子液体1-甲基-3-(丙基-3-磺酸基)咪唑硫酸氢盐([HSO3-pmim]HSO4)具有最好的催化活性,以该催化剂合成丁酸环己酯的最佳反应条件为:反应时间2.6 h,n(丁酸):n(环己醇)=1∶1.7,离子液体剂量4.8%,带水剂用量9.8mL,在该条件下,丁酸环己酯的酯化率为97.2%,与模型预测值基本相符。离子液体[HSO3-pmim]HSO4重复使用5次后,催化活性基本未降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号