首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
基于超快时间分辨光谱实验手段,研究了化学气相沉积(chemical vapor deposition,CVD)生长的ReS_2薄膜的超快载流子动力学和太赫兹发射。分别利用光泵浦探测和光泵浦太赫兹发射两套系统对ReS_2薄膜进行了测试,结果表明:ReS_2薄膜具有超快的载流子热化过程和亚纳秒量级的复合过程;在飞秒激光泵浦下能够产生频谱宽度为2.5 THz的太赫兹辐射。通过分析太赫兹辐射随泵浦光入射角改变而出现极性相反的现象,得出ReS_2薄膜产生太赫兹辐射的主要机制为表面场效应。研究结果不仅有助于理解ReS_2薄膜对超快激光脉冲的瞬态响应,而且为太赫兹光子器件(如太赫兹发射器等)的研究设计提供了重要参考。  相似文献   

2.
实验研究了HfO2薄膜特性以及掩模材料AZ1350以Ar为工作气体下的离子束的刻蚀特性.给出了离子能量、离子束流密度和离子束入射角等因素与刻蚀速率的关系曲线,用最小二乘法拟合了上述因素与刻蚀斜率的函数关系方程;分析了光刻胶和基片在刻蚀过程中随刻蚀深度的变化对图形转移精度的影响,用AFM的Tapping模式测量了刻蚀前后HfO2薄膜表面质量的变化.结果表明刻蚀速率与离子能量的平方根,及速流密度成正比,并随离子束入射角变化而变化;与刻蚀前相比,刻蚀工艺降低了因HfO2薄膜刻蚀深度的增加引起图形转移精度下降,因此提高刻蚀选择比是获得高分辨率图形的前提.研究结果已应用到了在HfO2/SiO2多层膜衍射光栅的制作中.  相似文献   

3.
为了研究层状ZrTe5(五碲化锆)在飞秒脉冲激发下的超快瞬态太赫兹辐射,利用太赫兹时域反射系统对其进行了测试分析。通过分析层状ZrTe5太赫兹电场幅度与飞秒激光泵浦功率及泵浦脉冲偏振关系,获得了层状ZrTe5产生太赫兹辐射的主要机理。同时还对比了相同泵浦条件下层状ZrTe5和本征GaAs(砷化镓)太赫兹辐射强度。研究表明,层状ZrTe5具有带隙结构窄、吸收深度浅、光生电子剩余能量较大、载流子迁移率较高等优势,在太赫兹产生方面比传统半导体具有更好的性能。该研究可为发现高效、高度集成化太赫兹辐射源提供参考。  相似文献   

4.
为了研究大晶粒高质量钙钛矿薄膜对光探测器的影响,制备了晶粒尺寸超过2 μm的MA0.7FA0.3PbI3薄膜,并基于该薄膜制备了光电导型的光探测器(MCP-PD)。基于该薄膜的光探测器在532 nm和3 V偏置电压下获得了高响应度(0.905 A/W)和探测度(3.18×1012 Jones)。在相似性能条件下,基于大晶粒尺寸薄膜制备的MCP-PD还表现出较快的响应速度。实验结果表明,大晶粒尺寸的薄膜降低了晶界对载流子传输的阻碍,提升了光探测器的响应度、探测度及响应速度。  相似文献   

5.
采用射频磁控溅射技术制备了Ge掺二氧化硅(Ge-SiO2)和Ge,Al共掺二氧化硅(Ge/Al-SiO2)两种复合薄膜,并进行了热退火处理形成了纳米Ge镶嵌结构。通过紫外-可见吸收谱测量,确定了两种薄膜中纳米Ge的光学带隙,并采用皮秒激光Z-扫描技术研究了薄膜的非线性光学性质。测试结果显示,在1 064 nm激发下得到的Ge-SiO2和Ge/Al-SiO2薄膜的非线性吸收系数分别为-1.23×10-7 m/V和4.35×10-8 m/W,前者为饱和吸收,而后者为双光子吸收。把两种薄膜作为可饱和吸收体均可实现1.06 μm激光的被动调Q和被动锁模运转。与Ge-SiO2薄膜比较,采用Ge/Al-SiO2薄膜可以获得较窄的调Q脉冲和锁模脉冲。最后,理论分析和实验比较了两种薄膜实现被动调Q和锁模的机理。  相似文献   

6.
快速轴流型CO2激光器和密封型CO2激光器超脉冲运转时,能够获得前沿迅速上升、脉宽窄、峰值功率高的激光脉冲输出,在激光加工和激光医疗等领域有重要应用价值。本文从理论和实验两个方面对快速轴流型与密封型CO2激光器超脉冲特性进行了研究,设计并研制了适合CO2激光器超脉冲运转的控制电源,在国内首次实现了快速轴流型与密封型CO2激光器的超脉冲运转。  相似文献   

7.
首次探讨了在H62黄铜基材料上激光熔覆镍基合金的可能性.并利用扫描电镜(SEM)对显微组织进行了观察,分析了熔覆层、结合区及热影响区的组织形貌及成分变化.研究结果表明,利用高能量密度的激光束熔覆涂层,使显微组织明显细化.覆层组织主要由r-Ni、Ni3B、CrB、M23(CB)6组成.覆层与基体间形成了冶金结合.基体受温度梯度影响产生了组织粗化的热影响区.  相似文献   

8.
声学超材料在低频减振降噪中的应用评述   总被引:10,自引:0,他引:10  
低频机械波在传播过程中穿透力强,难以衰减,特别是次声频段的机械波易与机体器官发生共振,对身体造成危害。为了实现对低频机械波的有效控制,解决现代工业生产和生活中普遍存在的噪声污染问题,结合最近十几年发展起来的声子晶体和声学超材料,系统地总结和论述通过声子晶体和声学超材料解决低频振动噪声问题的新方法。归纳和总结典型的低频振动噪声来源和对其进行控制方面存在的一些困难,介绍低频振动噪声的危害。重点概括基于声子晶体禁带特性实现低频振动噪声被动控制的相关研究工作,主要介绍通过亚波长尺寸特征的杆、薄板和薄膜类结构来实现低频振动和噪声衰减的具体方法和效果。在声学超材料的理论框架下,讨论薄膜类结构在低频振动噪声衰减中的应用及其优缺点。通过结合实际工程需要和最新研究动态,对这一领域存在的问题和后续发展趋势进行总结。研究对推动声子晶体和声学超材料在工程实践中的应用具有一定的引导意义。  相似文献   

9.
为了提升单层硒化钨(WSe2)薄膜的制备质量,在传统化学气相沉积(CVD)法制备的基础上进行改进,通过引入推拉式小车来制备单层WSe2薄膜,从而构造出可以调控沉积区域、精确控制生长时间,并可实现快速降温的生长方式。采用光学显微镜和原子力显微镜来表征制备材料的尺寸、荧光强度、形貌结构等特性,证明了利用推拉式小车法可成功制备出高质量的单层WSe2薄膜。推拉式小车法可以稳定制备大面积、高质量、单层的WSe2薄膜,为其在信息、能源、生物等前沿领域的应用提供参考。  相似文献   

10.
制备了厚、薄、反点阵结构以及颗粒结构镍薄膜分别作为体、面、线和点结构薄膜样品,利用飞秒激光泵浦探测技术,检测了4种镍薄膜的瞬态反射率变化情况,研究了微纳结构形式对镍薄膜超快热化动力学的影响。结果表明对于微纳结构镍薄膜来说,随着结构维数的减小,量子限域效应对电子热化时间有延缓作用。  相似文献   

11.
This work provides the fundamental knowledge of energy transport characteristics during very short-pulse laser heating of semiconductors from a microscopic viewpoint. Based on the self-consistent hydrodynamic equations, in-situ interactions between carriers, optical phonons, and acoustic phonons are simulated to figure out energy transport mechanism during ultrafast pulse laser heating of a silicon substrate through the detailed information on the time and spatial evolutions of each temperature for carriers, longitudinal optical (LO) phonons, acoustic phonons. It is found that nonequilibrium between LO phonons and acoustic phonons should be considered for ultrafast pulse laser heating problem, two-peak structures become apparently present for the subpicosecond pulses because of the Auger heating. A substantial increase in carrier temperature isobserveds for lasers with a few picosecond pulse duration, whereas the temperature rise of acoustic and phonon temperatures is relatively small with decreasing laser pulse widths. A slight lagging behavior is observed due to the differences in relaxation times and heat capacities between two different phonons. Moreover, the laser fluence has a significant effect on the decaying rate of the Auger recombination.  相似文献   

12.
In order to solve the Boltzmann transport equation (BTE) of phonons for investigating heat conduction in non-metallic solids, we propose employing a DSMC (direct simulation Monte Carlo) scheme to simulate the dynamics of phonons analogous to rarefied gas. In contrast to treating the BTE with conventional linear approximation, this scheme requires no relaxation times as input parameters. We can directly investigate couplings among phonons with different modes, although we have to assume an appropriate scattering model for phonon-phonon interactions. In this paper, we describe the DSMC scheme for phonon dynamics and present some results with our prototype codes for a simple solid model. In the first case of single-branch four-phonon processes, we carried out simulations of non-equilibrium thin films with a temperature gradient. We found that the temperature jump at the boundaries can be successfully achieved. For the second case of three phonon processes, we developed a simulation code that takes into consideration the different acoustic branches to evaluate the mode-dependent relaxation time and mean free path. This type of DSMC scheme for phonons enables us to include other relevant factors, such as optical branches and phonon-electron interactions.  相似文献   

13.
The lubricating properties of water have been discussed extensively for millennia. Water films can exhibit wearless high friction in the form of cold ice, or act as lubricants in skating and skiing when a liquid. At the fundamental level, friction is the result of a balance between the rate of energy generation by phonon excitation during sliding and drainage of the energy from the interface by coupling with bulk atoms. Using atomic force microscopy, we found that when H2O intercalates between graphene and mica, it increases the friction between the tip and the substrate, dependent on the thickness of the water and graphene layers, while the magnitude of the increase in friction was reduced by D2O intercalation. With the help of first-principles density functional theory calculations, we explain this unexpected behavior by the increased spectral range of the vibration modes of graphene caused by water, and by better overlap of the graphene vibration modes with mica phonons, which favors more efficient energy dissipation. The larger increase in friction with H2O versus D2O shows that the high-frequency vibration modes of the water molecules play a very important role in the transfer of the vibrational energy of the graphene to the phonon bath of the substrate.  相似文献   

14.
This article investigates numerically the carrier-phonon interactions in thin gallium arsenide (GaAs) film structures irradiated by subpicosecond laser pulses to figure out the role of several recombination processes on the energy transport during laser pulses and to examine the effects of laser fluences and pulses on non-equilibrium energy transfer characteristics in thin film structures. The self-consistent hydrodynamic equations derived from the Boltzmann transport equations are established for carriers and two different types of phonons, i.e., acoustic phonons and longitudinal optical (LO) phonons. From the results, it is found that the two-peak structure of carrier temperatures depends mainly on the pulse durations, laser fluences, and nonradiative recombination processes, two different phonons are in nonequilibrium state within such lagging times, and this lagging effect can be neglected for longer pulses. Finally, at the initial stage of laser irradiation, SRH recombination rates increases sufficiently because the abrupt increase in carrier number density no longer permits Auger recombination to be activated. For thin GaAs film structures, it is thus seen that Auger recombination is negligible even at high temperature during laser irradiation.  相似文献   

15.
MgxZn1−xO (0 〈 x ⩽ 0.12) thin films with the wurtzite structure have been successfully grown on c-Al2O3 substrates by metal-organic chemical vapor deposition (MOCVD). X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), photoluminescence (PL) spectrometry, and transmission measurements are performed to study the characteristics of Mg x Zn1−x O thin films. Results show that with increasing Mg content, the diffraction peak of Mg x Zn1−x O thin films shifts towards a higher diffraction angle (the biggest shift is 0.22°), and the full width at half maximum (FWHM) of the diffraction peak is broadened. Meanwhile, a blue-shift occurs at the near-band-edge (NBE) emission peak and the largest blue-shift of the band gap of the Mg x Zn1−x O films is 113 meV with Mg content x50.12. Therefore, the energy band gap of the Mg x Zn1−x O films is determined by Mg content in the thin films and the energy band gap increases with an increase of Mg content.  相似文献   

16.
The time of spin relaxation of excitons in (In,Al)As/AlAs quantum dots with an indirect bandgap and type-I band alignment is determined by measuring the dynamics of photoluminescence circular polarization induced by a magnetic field B. The spin relaxation time τ S increases with decreasing magnetic field in proportion to B ?5; its value is ~40 µs in a magnetic field of 6 T at a temperature of 1.8 K. As the temperature T increases in a magnetic field of 7 T, the value of τ S decreases as T ?1.1. The character of the dependences of τ S on the magnetic field and temperature evidences that spin relaxation of excitons is provided by a process with participation of one acoustic phonon.  相似文献   

17.
Polytetrafluoroethylene (PTFE) is a polymer that is well known for its exceptional tribological properties and, as such, it is commonly used to reduce the coefficient of friction between surfaces. In recent years it has also been established that by incorporating nanoparticle fillers in PTFE, it is possible to extend the polymer's life by reducing its wear rate. Although much study has been placed on bulk PTFE, very little study has been focused on thin films. This article demonstrates that SiO 2 nanoparticles can be used as a filler to significantly reduce the wear of PTFE thin films while also maintaining a low coefficient of friction. The wear resistance and coefficient of friction of PTFE/SiO 2 composite films on stainless steel substrates were tested using a linear reciprocating tribometer and compared to pure PTFE films and bare stainless steel to evaluate the benefit of incorporating the SiO 2 filler in the film. The composite films showed a significant improvement in wear resistance when compared to pure PTFE films. The coefficient of friction for the composite film remained low and stable during a 50 g normal load friction test for a duration of approximately 300 cycles, whereas that of PTFE showed an increasing trend at onset. In addition, of 1.7 and 3.3 wt% SiO 2 concentrations in solution, 3.3 wt% SiO 2 showed better performance, with a much higher wear resistance than that of 1.7% SiO 2 after being subjected to a 1,000-cycle abrasive wear test.  相似文献   

18.
A silane coupling reagent (3-mercaptopropyl)trimethoxysilane (abridged as MPTS) was self-assembled on a single-crystal Si substrate to form a two-dimensional organic monolayer (MPTS-SAM). The terminal –SH group in the MPTS-SAM film was in-situ oxidized to –SO3H group to endow the film with good chemisorption ability. Then ZrO2 thin films were deposited on the oxidized MPTS-SAM by way of the enhanced hydrolysis of aqueous zirconium sulfate (Zr(SO4)2·4H2O) in the presence of aqueous HCl at 50 °C, making use of the chemisorption ability of the –SO3H group. The thickness of the ZrO2 films was determined with an ellipsometer, while their morphologies and corresponding friction forces were analyzed by means of atomic force microscopy. The hardness and elastic modulus of the ZrO2 thin films were determined on a Nanoindentation II (MET) instrument. The macro-friction and wear behaviors of the ZrO2 films sliding against an AISI-52100 steel ball were examined on a unidirectional friction and wear tester and the worn surface morphologies observed on a scanning electron microscope (SEM). As the results, the as-deposited ZrO2 thin film at a deposition duration of 100 h is about 100 nm thick, it decreases to 48 nm after annealing at 500 °C and further decreases to 45 nm after heating at 800 °C. The as-deposited ZrO2 film is relatively rougher, with the rms to be about 1.0 nm, while the ZrO2 thin films heated at 500 and 800 °C have surface roughness rms of 0.76 nm and 0.68 nm, respectively. The ZrO2 film annealed at 800 °C has a high hardness to elastic modulus (H/E) ratio (0.062) as compared to the as-deposited ZrO2 film and the film annealed at 500 °C. Both the two annealed ZrO2 films show excellent wear-resistance as they slide against AISI-52100 steel at a normal load below 2.0 N, while the one annealed at 800 °C has better wear-resistance. The differences in the friction and wear behaviors of the as-deposited ZrO2 film, the ZrO2 film annealed at 500 °C and that annealed at 800 °C are attributed to their different micro structures and compositions. Since the ZrO2 films was well adhered to the underlying MPTS-SAM, it might find promising application in the surface-protection of single crystal Si and SiC subject to sliding at small normal load in microelectromechanical systems (MEMS).  相似文献   

19.
The mechanism of charge transport in MIS structures on the basis of thin hafnium and zirconium oxide films is studied. It is shown that transport in the studied materials is limited by phonon assisted tunneling between traps. From the comparison of experimental current-voltage characteristics of MIS structures n-Si/HfO2/Ni and n-Si/ZrO2/Ni, the estimated, thermal, and optical energies of traps are determined. It is shown that oxygen vacancies are localization centers (traps) of charge carriers in HfO2 and ZrO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号