首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
对冲击气缸间隙密封的理论分析表明,当冲击气缸的结构尺寸确定时,影响泄漏量的最主要因素为间隙宽度和密封间隙进出口压差。利用FLUENT软件建立机械振打系统冲击气缸间隙密封模型,分析冲击气缸密封间隙进出口压差和间隙宽度对间隙密封泄漏量的影响。结果表明,当缸筒静止时,冲击气缸入口操作压力从0.3 MPa变化到0.5 MPa时对其泄漏量影响不显著,实际工业应用中可以忽略;间隙密封的密封性能主要受间隙宽度控制,其泄漏量随着间隙宽度的增大而增大,但在间隙宽度小于0.03 mm时泄漏量随间隙宽度增加的变化较小,因此冲击气缸的活塞与缸筒之间的间隙密封的间隙宽度应控制在0.03 mm以下。  相似文献   

2.
利用FLUENT软件建立冲击气缸往复运动间隙密封的模型并结合实验测试系统对其密封性能进行研究。为控制和减小往复运动中间隙密封的泄漏量,分析活塞往复运动速度、间隙进出口压差对其的影响。结果表明,当密封间隙宽度不变时,冲击气缸往复运动间隙密封的泄漏量随入口压力增大线性增大,并且压差与泄漏量的变化率不受活塞速度变化的影响;当密封间隙宽度不变时,在相同的入口压力下,泄漏量随着活塞速度的增大线性增大;冲击气缸的操作压力变化范围小导致其对泄漏量的直接影响不大,但是不能忽略压力变化通过对速度的影响而引起泄漏量的增大。  相似文献   

3.
针对新型线香机在制香过程中缸筒活塞的间隙密封问题,在研究新型线香机制香的基础上,对新型线香机的密封性能进行了归纳,提出了该缸筒活塞装置泄流量的仿真研究,通过采用GAMBIT软件建立缸筒活塞的数学结构模型,利用Fluent模拟缸筒活塞的内部流动,对不同结构的间隙内部流场进行了仿真分析,得出了缸筒活塞间隙密封内压力场的流场分布图。研究结果表明,该缸筒活塞装置的内部流场的间隙密封的密封性能主要受间隙宽度的控制影响,随着压力、密封间隙的增大,泄漏量也随之增加,而缸筒与活塞之间的密封间隙最优化的宽度应控制在0.3 mm以下,可以通过减小密封间隙来减少泄漏量,该结果可对新型线香机的改进优化提供了方向。  相似文献   

4.
直通式篦齿密封性能的数值模拟与试验研究   总被引:1,自引:0,他引:1  
利用 FLUENT 软件对过热蒸汽分级机转轴的篦齿密封的内部流场进行数值模拟,对影响其性能的部分因素进行分析。结果表明,篦齿密封两端压差对泄漏量的影响非常明显,压差越大,泄漏量越大;篦齿密封的泄漏量随着节流间隙宽度增大而增大,但两者是非线性的关系;在齿形角不变的情况下,篦齿空腔深度小于2 mm 时对密封泄漏量的影响很大,而空腔深度大于2 mm 时对密封泄漏量的影响很小;转轴转速对泄漏量基本没有影响。通过试验验证了数值模拟方法计算篦齿密封泄漏量的可行性。  相似文献   

5.
针对井下增压器活塞密封问题,提出以非接触式迷宫间隙密封代替原有填料密封。构建迷宫间隙密封的二维增阻槽模型,基于ANSYS-Fluent流体仿真软件,采用SST模型和SIMPLE算法,分析单个槽槽深和槽宽与泄漏量之间的关系,并探讨有限长度下增阻槽的布置方法。结果表明:槽深一定时,泄漏量随着槽宽的增大而增大;槽宽在1 mm以上时,当槽宽深比在2∶1左右泄漏量最小;槽深增大达到槽宽深比为1∶1时,随着槽深增大泄漏量的变化趋于平缓。在有限长度下,槽间距增大,槽与间隙进出口的距离减小,泄漏量随着槽间距的增大呈现出先减少后增大的规律,因此必须合理匹配槽间距及槽与间隙进出口的距离,才能达到较好的密封效果。  相似文献   

6.
类迷宫密封由于其结构的特殊性,内部流体流动也有别于迷宫密封。利用FLUENT软件分析密封间隙对类迷宫密封性能的影响,并与传统迷宫密封内部流场进行对比。结果表明:在同等尺寸条件下,类迷宫密封湍流流体流动在槽向上比迷宫密封明显,在研究类迷宫密封时槽向流动不可忽略;间隙宽度对泄漏特性影响较大,随着间隙宽度的增大,流体速度降低,节流效应减弱,泄漏量增大。  相似文献   

7.
纯水密封摩擦力大、泄漏量大、寿命短,无法为矿井液压系统稳定工作提供可靠有效的保障,从而导致开采过程中出现安全隐患。针对上述问题,利用有限元分析软件ANSYS建立复合密封件二维轴对称模型,在其他条件相同的情况下,分析不同径向间隙、不同压力载荷对密封静态和动态性能的影响,得到密封接触应力变化时对密封性能的影响规律,通过对不同径向间隙进行参数化设计,找到满足工作条件的最优径向间隙。仿真分析表明:径向间隙为0.25 mm时,复合密封件在1.5倍公称压力下的接触应力为49.854 MPa,密封效果最好;径向密封间隙为0.375 mm时,接触应力过小会导致泄漏现象产生;径向间隙为0.125 mm时,虽然密封性能进一步提升,但是接触应力的增大导致密封件磨损加速。实验表明:0.25 mm径向间隙液压缸密封寿命可达到20000次,较0.125 mm径向间隙液压缸密封寿命长约1/3。  相似文献   

8.
针对影响高速列车齿轮箱轴向双边直通式迷宫密封性能的空腔参数如宽度与深度,利用FLUENT软件仿真计算迷宫密封的内部流场与泄漏量,分析迷宫密封矩形空腔的最佳深宽比,研究不同压比、节流间隙宽度对最佳深宽比的影响规律。研究结果表明:迷宫密封的泄漏量随着空腔宽度的增大而减小;双边直通式迷宫密封的矩形空腔最佳深宽比为0.3,最佳深宽比与压差和节流间隙宽度无关。当压差过大或者节流间隙宽度过小,最佳深宽比对提高密封性能的作用不明显。  相似文献   

9.
以CFD软件FLUENT为基本工具,应用有限体积法对流场进行数值模拟,采用SSTk-ω模型和SIMPLE算法,对间隙密封内部流场进行了数值模拟。得出了间隙大小、槽深、槽宽、槽数对间隙密封流场和泄漏量的影响,研究成果具有一定的实际价值。结果表明:间隙越小,泄漏量越小,关系呈线性;密封槽数增加,泄漏量线性减小;槽宽增大,泄漏量近似线性增大;槽宽0.5mm时,槽深增加,泄漏量减小;槽宽大于0.5mm时,若槽深宽比小于1.5,泄漏量增大,大于1.5时泄漏量减小。  相似文献   

10.
迷宫密封中可压流体流场的数值模拟   总被引:3,自引:0,他引:3  
应用Fluent软件计算迷宫密封间隙宽度和空腔深度以及直通式迷宫密封和错列式迷宫密封对迷宫密封流场和泄漏量的影响。计算结果与分析表明,间隙宽度对泄漏量的影响体现在通过改变空腔进出口面积来改变泄漏量。所以泄漏量随间隙宽度呈线性变化。在实际运用中,在保证安全的情况下尽量减小间隙宽度;在一定条件下,空腔深度越大,紊流程度下降,泄漏量越大;错列式迷宫密封的泄漏量要明显小于直通式迷宫密封。  相似文献   

11.
在自由活塞斯特林机动力活塞间隙密封中,间隙内的气体泄漏会引起工作腔内压力和气体质量的变化,进而影响斯特林机的工作效率。为研究在压缩循环过程中气体泄漏量对压力的动态影响,建立间隙密封长度不变、间隙密封长度单侧变化和间隙密封长度双侧变化3种不同的间隙密封物理模型,采用时间推进法,分析求解不同形式的密封对泄漏量的影响。结果表明:间隙密封在启动阶段时单向泄漏量最大,随着时间的推进,泄漏量逐渐减小后达到稳定,间隙密封长度不变的模型相较于其他2种模型的单向泄漏量最少。基于间隙密封长度不变的模型,分析气膜厚度、背压、密封长度对泄漏量的影响,对气膜间隙和背压进行优化设计。结果表明:气体质量的泄漏随气膜厚度和背压的增加而增加,随活塞长度的增加而减小;当气膜间隙为20~30 μm,活塞长度为10~15 cm,背压在3~5 MPa时,间隙密封泄漏量在3%以内,符合动力活塞间隙密封的设计要求。分析结果为自由活塞斯特林机动力活塞间隙密封提供了设计依据。  相似文献   

12.
基于FLUENT的迷宫密封机理研究   总被引:1,自引:0,他引:1  
林丽  刘卫华 《中国机械工程》2007,18(18):2183-2186
针对影响迷宫密封泄漏特性的三个因素:间隙宽度、齿型夹角以及空腔深宽比,计算了不同结构的内部流场,探讨了各因素对泄漏特性的影响,分析了密封机理。结果表明:迷宫密封的泄漏量随间隙的增大而增大,并得到满足泄漏量条件的最大间隙宽度cmax≈0.57mm;在一定深宽比下,存在最佳齿型角度,随着压比的增加,最佳齿型角度的影响加大;空腔深度和空腔宽度之间存在最佳匹配关系,且空腔深宽比不随间隙宽度的变化而变化。  相似文献   

13.
分层采油泵内柱塞与泵筒间隙密封的间隙几何参数和密封槽结构对阻流效果皆有影响。为探究有限长度泵间隙下密封槽的槽宽和数量对泄漏量的影响,基于Naiver-Stokes方程建立产出液在间隙流动控制方程,基于计算流体动力学对间隙流场进行数值分析。以广泛使用的FCCYB38-28A型分层采油泵为例(其配合间隙有3种,分别为0.045、0.095及0.145 mm),分析不同泵间隙下密封效果随密封槽的尺寸和数量变化的规律。结果表明:0.045 mm密封间隙下泄漏率随密封槽槽宽波动变化,先减小后增大;0.095、0.145 mm密封间隙下泄漏率随着密封槽槽宽增大而减小;0.145 mm密封间隙下,随密封槽数量增加泄漏率减小,但由于密封槽数量增多产生的透气效应使得泄漏率减小趋势逐渐趋于平缓;在给定密封长度和0.145 mm间隙下密封槽数量取21个、尺寸取1.5 mm×1.5 mm时间隙密封具有较好的阻流效果。  相似文献   

14.
密封是影响高压柱塞泵可靠运行的关键因素。首先,建立柱塞组件数学模型,对柱塞组件的动态泄漏量与容积效率进行理论分析与计算;其次,为揭示水的压缩性对柱塞泵泄漏量与容积效率的影响机理,利用Fluent对以水为介质的高压柱塞泵的柱塞组件内部流场进行仿真分析。结果表明:随着压力增大,水的可压缩性对间隙泄漏的影响程度呈非线性增大,当压力超过50 MPa时,其影响程度变得更大。该研究方法与结果为设计水为介质的高压径向柱塞泵的间隙密封提供了理论依据。  相似文献   

15.
考虑间隙内水介质黏度、间隙受压形变在柱塞轴向沿程变化,用AMESim软件对超高压水压泵细长型柱塞副在工作压力从0~120 MPa变化时的间隙、泄漏占理论排量的比值进行了计算预测。结果表明:随着工作压力升高,柱塞间隙内水介质黏度沿程变化引起的泄漏量呈近似线性增长,在120 MPa时间隙泄漏增大25%;间隙高压形变引起的泄漏量快速增长,在120 MPa时间隙泄漏增加3倍;当配合间隙为3, 5, 7μm时,间隙泄漏占比为3.51%,8.93%和18.51%;超高压工况下,影响柱塞间隙泄漏的主要因素是柱塞副间隙大小、间隙高压变形量、柱塞副接触长度、柱塞偏心量,减小柱塞副配合间隙、间隙高压变形量,增大柱塞副接触长度,可显著减小泄漏,提高容积效率。  相似文献   

16.
针对车辆减振器油液内泄漏问题,对其内部油液微小内泄漏开展仿真与试验分析。通过数学模型对活塞与缸筒环形缝隙中流体进行理论受力分析,运用Autodesk Inventor软件建立减振器内部环形间隙流体几何模型,利用CFD仿真技术对环形间隙流体三维模型开展仿真分析,通过改变流场速度、压力、湍流动能及温度参数,分析得到影响减振器油液微小内泄漏的主要影响因素;采用伺服示功机对不同活塞速度和环形间隙下的油液内泄漏进行试验测试。结果表明:活塞静止时,节流口速度、压力、湍流动能的变化对环形间隙油液内泄漏影响较大,温度变化影响较小;活塞运动时,泄漏量随活塞速度、活塞与缸筒之间的间隙的增大而增大,因此在加工精度允许条件下,可通过减少活塞与缸筒间的间隙来减小泄漏量。  相似文献   

17.
龚俊  田文静 《机械制造》2010,48(10):37-39
斯特林发动机的密封关键是气缸与活塞的间隙密封,能否有效地将其密封直接影响了斯特林发动机的性能与可靠性。斯特林发动机采用间隙密封,可以在完成密封作用的同时消除接触磨损和因此而产生的污染,但由于间隙内气体的泄漏,引起了工质的损失。建立了层流工况下斯特林发动机气缸与活塞间隙密封的数学物理模型,推导了密封间隙的泄漏量。再考虑由于实际工况和位置偏心引起的密封间隙的泄漏量,最后与理想条件下的泄漏量进行比较,得出结论:实际工况和位置偏心引起的密封间隙的泄漏量较理想状态下泄漏量大。  相似文献   

18.
高温气冷堆作为先进的第四代核电堆型技术,主氦风机是其中非常关键设备。以高温气冷堆主氦风机主轴的迷宫密封为研究对象,通过CFD数值技术分析迷宫密封在不同出入口压差、轴转速、空腔宽度和齿宽下的泄漏特性,同时建立密封试验平台,通过试验研究轴的转速、出入口压差对泄漏特性的影响。结果表明,随着出入口压差的增大,泄漏量增加明显,近似成正比关系;随着转速的增加,泄漏量有所降低,但变化幅度很小,在转速达到5 000r/min时,泄漏量最小;随着空腔宽度的增加,泄漏量减小;随着齿宽的增大,泄漏量减小。  相似文献   

19.
旋转式压力能交换器是利用正位移原理进行流体压力能利用的装置.为全面了解其端面密封特性,基于N-S方程和SIMPLEC算法,在不同端面间隙和流量下,对密封端面流场进行了数值模拟,考察了密封压力和端面泄漏的变化情况.结果表明:转子转速对端面泄漏量没有影响,端面间隙内的流动为层流时,可以获得较为稳定的液膜压力;端面密封性能随着间隙的增加迅速恶化,当间隙超过0.03 mm后,即丧失密封能力.  相似文献   

20.
为探讨锥形间隙对袋型阻尼密封气流力的影响,建立锥形间隙袋型阻尼密封数值求解模型,研究进出口压比、偏心率、转速及锥形度对袋型阻尼密封气流力的影响;设计密封气流力实验台,分析在不同进出口压比及偏心率下锥形间隙袋型阻尼密封气流力的大小;通过密封压力分布规律揭示锥形间隙对袋型阻尼密封气流力的影响机制。研究结果表明:随着进出口压比,偏心率的增大,密封周向楔形间隙内流体动压效应增强,收敛间隙袋型阻尼密封与等间隙袋型阻尼密封的径向气流力增大,发散间隙袋型阻尼密封径向气流力绝对值增大。当转速为0时,密封切向气流力为0,随着转速的提高,密封的切向气流力逐渐增大,密封间隙内气流的周向流动是形成切向气流力的主要原因。收敛间隙袋型阻尼密封沿气流流动方向,密封径向间隙不断减小,气体的聚集使得密封腔中压力升高,径向压差增大,从而产生较大的径向气流力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号