首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于格子-波兹曼方法 (LBM)理论,分析含固体颗粒的轴承润滑问题。通过建立润滑油的理论离散模型,分析固体颗粒分布对于油膜压力、润滑油流速的影响。分析结果表明:在油膜厚度方向分布的固体颗粒越多,颗粒的分布形式对润滑油流动的阻碍能力越强,则其对于油膜压力及油膜流动的影响也越大;当分布形式相同时,固体颗粒个数越多对油膜压力的影响越大;即润滑油中所含固体颗粒浓度越大,对润滑的影响程度也越大;无论分布形式如何,固体颗粒对于离颗粒较远的下游区域的速度影响较小。  相似文献   

2.
为研究润滑油中含有微小固体颗粒时对缸套-活塞环润滑性能的影响,采用格子-波兹曼方法(LBM)建立含有固体微颗粒的活塞环润滑离散模型,针对活塞环润滑特点进行油膜边界条件处理,研究单个及多个颗粒对于润滑的影响,同时分析颗粒形状、分布及位置对活塞环润滑的影响。研究表明:当颗粒距离活塞环较近时,对于活塞环附近的油膜压力影响较大;当颗粒位于油膜破裂边界附近区域时,由于颗粒的存在导致油膜压力场出现负压,并且出现回流区,这将有可能导致颗粒堆积进而造成磨损;无论是单个颗粒还是多个颗粒都会使油膜压力有明显突变,而多个颗粒时影响的润滑区域更大,这种突变会导致活塞环运动的稳定性变差,从而影响发动机的性能。  相似文献   

3.
通过数值求解研究表面凸起和凹坑缺陷对点接触等温稳态弹流润滑油膜厚度和压力的影响,并讨论了缺陷位置和尺寸的影响。结果表明,凸起或凹坑缺陷对接触区的膜厚和压力的影响不同:当单个凸起位于接触区出口油膜颈缩处时,润滑情况较差;而单个凹坑靠近接触区中心位置时,油膜压力较高,对接触表面不利;凸起的高度越大,宽度越小,对接触区的润滑情况影响越大;而凹坑的深度和宽度越大,对接触区的润滑情况影响越大。  相似文献   

4.
本文提出了一个热弹性流体动力润滑椭圆接触问题的完全数值解,并且描述了其相应的求解过程。通过联立求解允许润滑油粘度和密度沿油膜厚度方向变化的一般雷诺方程、弹性方程、润滑油膜的能量方程、固体的热传导方程以及润滑油的粘度方程和密度方程,求解出了不同滚动速度和滑滚比下的油膜压力分布、油膜厚度和形状、油膜内和固体内的三维的温度分布以及接触处的滑动摩擦系数和滚动摩擦系数。所得到的数值结果表明:在一般中、低速情况下,热效应对压力分布、油膜厚度以及滚动摩擦系数的影响较小,但对滑动摩擦系数的影响则相当显著;在接触区外,油膜温升相比之下是微小的,而接触区内的温升明显地随滚动速度和滑滚比的增加而增加;在油膜接触区内,存在着一个形状和位置都与压力峰基本一致的温度高峰区;在固体与油膜之间的两个分界面上,温升一般略低于油膜中层温升,而进入固体以后,温升沿垂直于油膜的方向迅速衰减。本文所研究的问题系稳态问题润滑剂仍被假定为牛顿流体。  相似文献   

5.
基于线接触热弹流脂润滑数值计算模型,结合单个球状固体颗粒的相关参数进行修正,建立考虑固体颗粒的线接触热弹流脂润滑的数值计算模型。采用多重网格法求解压力、膜厚和润滑油膜平均温升等润滑指标,得到不同颗粒速度、尺寸半径和中心位置下润滑油膜的压力、膜厚及温升分布并进行对比分析。结果表明:润滑脂中的固体颗粒容易造成油膜压力和温升的突变;随着固体颗粒向油膜中心的移动以及中心速度和颗粒半径的增大,压力、膜厚和平均温升整体分布都向入口区移动,其中颗粒半径对油膜压力、膜厚和平均温升的影响尤为显著。因此,在实际工作中应尽可能避免接触区内混入固体颗粒,尤其是半径相对较大的固体颗粒。  相似文献   

6.
以静止的PMMA平面滑块和旋转的光学透明玻璃盘为润滑副,利用基于光干涉原理的微型面接触润滑油膜测量系统,对PMMA-玻璃形成的润滑油膜厚度及形状进行测量。结果表明,由于润滑面的低弹性,在润滑油膜压力作用下固体表面发生明显的弹性变形,该变形随速度、载荷和PMMA滑块倾角的变化而变化;油膜厚度随速度的增加而明显增加,随载荷增加明显降低,滑块倾角对油膜形状也有明显影响。  相似文献   

7.
刘伟  刘小君  王伟  刘焜 《中国机械工程》2007,18(24):2993-2997
对多颗粒分布的液-固二相流体润滑进行了研究。对有颗粒存在时的润滑区域进行划分,建立了多颗粒状态下的雷诺方程,引进颗粒的速度、大小、位置,颗粒间的距离等参数,在给定油膜承载力的情况下运用有限元法对有限长滑块进行了数值求解。结果表明:颗粒的存在使颗粒附近的压力分布有了明显的变化;油膜承载力越大,颗粒对压力分布、最小油膜厚度的影响越明显;颗粒处于运动状态或静止状态对压力分布和最小油膜厚度的影响趋势是一致的,但运动颗粒的影响程度较小些;颗粒间的距离、颗粒半径、颗粒数目对压力分布也有比较大的影响。  相似文献   

8.
点接触乏油混合润滑的数值模拟研究   总被引:1,自引:0,他引:1  
基于改进的统一Reynolds方程,对点接触乏油混合润滑进行数值模拟,研究供油量、载荷、卷吸速度等对混合润滑性能的影响。分析时将润滑区域分为两部分,在压力区润滑油完全充满间隙,在空穴区润滑油部分充满间隙,这两区域的润滑特性都采用离散化的Reynolds方程求解;采用快速傅立叶变换算法求解弹性变形,采用GaussSeidal低松弛迭代逐行扫描法求解压力。结果表明:随着初始供油量的变化,润滑油油膜压力、油膜厚度以及部分油膜比例都会受到影响;速度对点接触乏油混合润滑的影响主要表现在油膜厚度分布上,而载荷的影响主要表现在压力分布上;随着载荷的升高,油膜压力将增大,而油膜厚度有轻微的减小,随着速度的升高润滑油油膜厚度减小。  相似文献   

9.
建立某V型8缸内燃机曲轴主轴承的热弹性流体动力学(TEHD)仿真模型,并对各主轴承润滑状况进行分析.针对润滑状况较差的第3主轴承,分析油槽开设方案、相对间隙、轴承宽度和润滑油特性对其润滑状况的影响.结果表明,随着相对间隙的增大,主轴承最小油膜厚度先增大后减小,当间隙过小时,摩擦功耗较大,润滑油温度较高,油膜厚度小;当间隙过大时,泄漏的润滑油较多,油膜厚度减小,且冲击振动大.主轴承的宽径比要适当,轴承宽度过小,油膜厚度偏小,承载能力过低;轴承宽度过大,润滑面积增大,润滑油流量相对减小,摩擦产生热量增加.研究表明,该主轴承适宜在上瓦开设油槽,轴承间隙选为25μm,宽度选为30 mm较好.  相似文献   

10.
为探究冲击载荷对滚滑轴承润滑性能的影响,设计一种轮子扁疤系统,以模拟轴承受到的循环冲击载荷,利用数值分析法对比研究冲击载荷作用下滚滑轴承的润滑特性及不同工况对滚滑轴承滚子润滑的影响。结果表明:滚滑轴承的滚子润滑受冲击载荷的影响小于滚动轴承;冲击载荷发生前,滚滑轴承滚子油膜有高于油膜中心压力的第二峰值压力,油膜出口区有明显缩颈现象,随冲击载荷的增大,第二峰值压力虽会逐渐减小,但不会消失;冲击载荷频率越大,最小油膜厚度越大,冲击载荷幅值越大,滚子油膜厚度越薄;滚子油膜厚度随润滑油黏度、转速的增加而增加。  相似文献   

11.
李超  马庆镇  李连升  董朵 《润滑与密封》2023,48(10):182-189
以某发动机惰齿轮轴承为研究对象,采用一维动力学方法进行多工况计算,针对油孔布置、载荷方向、载荷大小、轴承转速4种因素,分析滑动轴承润滑油流量、最小油膜厚度、偏位角、最大油膜压力4个动压特性参数的变化规律。结果表明:油孔布置和载荷方向主要对润滑油流量有明显影响,而对其他3个动压特性参数影响较小;油孔数量越多,油孔在圆周方向上越靠近油膜厚度最大处,则润滑油流量越大;油孔分布越均匀,因载荷方向改变引起的流量波动越小;载荷大小和轴承转速对4个动压特性参数都有明显影响;随载荷增加,最大油膜压力大致呈线性增加,而其他3种动压特性的变化速率降低;随转速增大,最大油膜压力减小的速率逐渐降低,而其他3种动压特性大致呈线性增加。  相似文献   

12.
以聚甲醛塑料材料为例,选择了广义Kelvin模型作为塑料齿轮研究的黏弹性模型,分析得出钢制齿轮与塑料齿轮啮合的黏弹性变形方程,无量纲化弹流润滑方程并离散化建立非线性方程组,推演该方程组的雅克比矩阵并利用Newton-Raphson迭代方法求解该方程组后得到油膜形状及压力分布。在黏弹性基础上分析油膜形状和油膜厚度,考虑速度和载荷对压力分布及油膜分布的影响。结果表明:塑料齿轮相对较软,在啮合过程中在接触区内与金属斜齿轮啮合在润滑状态下的油膜形状也相对缓和;考虑塑料齿轮的黏弹特性,油膜在主要承载区域油膜厚度增加;当速度增加时,油膜厚度变厚,压力峰值向入口移动;当载荷增加时,油膜厚度变薄,压力峰值向出口移动。  相似文献   

13.
椭圆接触乏油弹流润滑影响因素分析   总被引:1,自引:0,他引:1  
采用多重网格法,研究了载荷、速度和材料参数对椭圆接触乏油弹性流体动压润滑油膜厚度和压力分布的影响.结果表明:载荷增大,油膜厚度减小,最小油膜厚度向出口方向移动,颈缩现象逐渐变强,二次压力峰特点凸现,其位置向出口区移动;速度增大,油膜厚度增大,颈缩位置向膜厚中心移动,油膜在入口区就已开始收缩,压力分布曲线的二次压力峰变得更加尖锐,并逐渐向入口区移动;材料参数增大,油膜厚度和压力均增大,油膜颈缩位置向出口方向移动,二次压力峰位置没有变化.  相似文献   

14.
针对滑动轴承润滑中润滑油含有固体颗粒的情况,将格子-波兹曼方法(LBM)应用到润滑问题的求解中,得到润滑油中含有固体颗粒时的油膜压力分布。并通过分析计算得出了颗粒间距及颗粒相对运动对轴承润滑的影响规律,使得轴承润滑分析更符合实际工况。  相似文献   

15.
为获得润滑状态下三点接触球轴承更为准确的刚度特性,应考虑弹流润滑效应对轴承刚度的影响。文中基于拟静力学模型考虑高速离心力和陀螺力矩效应,根据给定轴承的结构参数和工况,计算滚动体与内外圈的法向接触载荷和各部件的运动速度。将拟静力学模型的计算结果和润滑介质参数代入弹流润滑模型,求解出滚动体与内外圈之间的压力分布和油膜厚度分布。进一步研究了转速、轴向载荷和润滑油的初始黏度对油膜压力和最小油膜厚度的影响。基于弹流润滑理论分析了转速和轴向载荷对轴承接触刚度、油膜刚度及综合刚度的影响。结果表明:转速的提高会大幅增加润滑油膜的整体厚度;润滑油初始黏度的增大会增加油膜厚度;随着轴承转速的提高,轴承的整体轴向刚度和轴向油膜刚度减小;随着轴向载荷的增大,轴承轴向刚度和轴向油膜刚度增大,且差值变化不大。  相似文献   

16.
彭朝林  谢小鹏  陈祯 《轴承》2015,(5):28-31
根据脂润滑轴承失效表现形式,分析了滚动轴承沟道表面缺陷产生的原因,建立了球-沟道表面缺陷条件下的脂润滑弹流数学模型和油膜厚度方程,采用数值计算方法分析了不同尺寸的表面缺陷及表面光滑条件下的脂润滑弹流润滑油膜压力和油膜厚度分布规律。结果表明:轴承工作过程中,球-沟道表面会形成位置、尺寸和形状随机分布的凸起和凹坑;相比于光滑表面,缺陷表面会引起油膜压力和油膜厚度显著变化,且对于同类型表面缺陷,随着缺陷尺寸的增大,引起油膜压力和油膜厚度分布变化的规律大致相同但效果增强;表面缺陷均会对轴承润滑脂的润滑效果造成不良影响。  相似文献   

17.
《轴承》2015,(5)
根据脂润滑轴承失效表现形式,分析了滚动轴承沟道表面缺陷产生的原因,建立了球-沟道表面缺陷条件下的脂润滑弹流数学模型和油膜厚度方程,采用数值计算方法分析了不同尺寸的表面缺陷及表面光滑条件下的脂润滑弹流润滑油膜压力和油膜厚度分布规律。结果表明:轴承工作过程中,球-沟道表面会形成位置、尺寸和形状随机分布的凸起和凹坑;相比于光滑表面,缺陷表面会引起油膜压力和油膜厚度显著变化,且对于同类型表面缺陷,随着缺陷尺寸的增大,引起油膜压力和油膜厚度分布变化的规律大致相同但效果增强;表面缺陷均会对轴承润滑脂的润滑效果造成不良影响。  相似文献   

18.
在滚动轴承润滑中,轴承表面粗糙度和固体颗粒对润滑油的影响不能忽视,因此需对Dowson-Higginson方程进行修正。考虑表面粗糙度、固体颗粒、轴承动力学及滚子修形的多尺度参数的耦合影响,建立圆柱滚子轴承的复杂润滑模型并进行数值求解,提出一种基于Dowson-Higginson公式的最小膜厚改进公式。利用轴承动力学求解滚子的实际载荷和速度,结合有限长滚子弹流润滑,考虑表面粗糙度和微极流体效应,建立有限长弹流润滑模型,并推导出改进的油膜厚度方程。结果表明:圆柱滚子轴承润滑存在“端面效应”,最小油膜厚度与最大油膜压力均出现在滚子两端,通过滚子凸度设计可改善这种现象。数值算例分析结果表明,改进后的膜厚方程具有较高的精度。改进后的膜厚方程准确、全面地描述了圆柱滚子的实际润滑情况,能够为其结构设计、加工方法、传动效率、润滑特性、疲劳寿命及可靠性等研究提供理论及分析工具。  相似文献   

19.
赵东旭  倪艳光  马子魁 《机械传动》2024,(1):105-110+158
随着风力发电机组的功率增加,滑动轴承在风电齿轮箱中的使用优势逐渐突显。当风力发电机组内的轴承润滑系统堵塞或供油不足时,滑动轴承将长期处于贫油润滑状态。为了研究滑动轴承的贫油润滑特性,基于Reynolds方程和Reynolds边界条件,考虑油膜压力作用下轴套的弹性变形,建立了贫油润滑状态下滑动轴承的计算模型;对比了计入弹性变形和不计入弹性变形的滑动轴承贫油润滑性能;分析了轴套弹性模量和供油量对滑动轴承贫油润滑性能的影响。结果表明,计入弹性变形后的最小油膜厚度位置位于轴套两侧,更加符合实际情况;随着轴套材料弹性模量的增加,轴颈偏心率逐渐减小,最大油膜压力逐渐增加,最小油膜厚度逐渐增加;随着供油量的增加,轴颈偏心率逐渐减小,最大油膜压力逐渐降低,最小油膜厚度逐渐增加。  相似文献   

20.
基于固液两相流理论,研究在润滑油中悬浮颗粒和空穴现象同时作用下,静压滑动轴承油膜的承载能力变化,得到油膜在固体颗粒和空穴现象作用下的压力分布,并分析颗粒含量与气体溶解率变化对单油孔以及双油孔供油时低速重载滑动轴承油膜承载能力的影响。计算结果表明,增加润滑油中固体颗粒的含量可以提高油膜承载能力,在一定固体颗粒含量下,增加固体颗粒直径也可以提高油膜承载能力,但需同时考虑固体颗粒对流动稳定性的影响;在控制空穴饱和压力一定的情况下,油膜压力场随气体容积率变化很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号