首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 394 毫秒
1.
李彦  付敏  朱革  高宇  许现波  王林  昌驰 《光学精密工程》2016,24(5):1028-1035
针对传统叠栅形式光栅存在制造难度大、安装要求高等缺点,提出了一种用时间细分空间的单栅式时栅位移传感器。从光的粒子性出发,分析了用正交变化的光场信号合成光场电行波的方法;用点阵发光二极管(LED)模块作为交变光源,用空间正交的光敏阵列直接耦合光强信号获取了反应空间位移的电行波信号;最后,通过检测电行波信号与激励信号过零点之间的时间差,实现了对空间直线位移的测量。研制了原理样机,采用普通机械加工方法对其进行了实验验证。结果表明,在440mm测量范围内,样机的测量精度可达±2μm。该单栅式时栅位移传感器减少了叠栅式传感器对安装工艺的要求,提高了抗干扰能力;采用的测量技术避免了传统粗光栅技术存在的精度难以提高、动态特性差等缺点,为光学位移测量提供了一种不通过精密机械细分来提高测量精度的方法。  相似文献   

2.
针对现有磁场式直线时栅位移传感器行波磁场产生过程中,齿槽的存在影响行波磁场的匀速性,提出基于平面线圈线阵的直线时栅位移传感器。无齿槽的结构形式提高了行波磁场的匀速性,可实现大极距下的高精度测量。传感器将施加正交信号的两相励磁线圈相间排列形成平面线圈线阵,产生的行波磁场通过磁场拾取线圈感应出电行波信号,处理后得到位移量。通过电磁场分析软件对传感器进行建模仿真,根据仿真结果得到测量误差;通过理论分析对测量误差进行分析溯源,并根据分析结果对传感器结构进行优化。基于分析和优化结果研制出传感器样机,并进行了精度实验。实验表明,传感器在240 mm内测量精度为±1μm,实现了精密测量。  相似文献   

3.
差动变压器式位移传感器原理简单,便于实现。但是位移传感器会产生零位电压,同时在信号处理过程中,电路漂移也会引起测量误差。文中主要基于这种传感器的工作原理和信号处理过程,阐述零位电压产生的机理和消除的方法,提高传感器的测量精度,并用MATLAB仿真和实验的方法证明零位电压产生的主要部位,进而说明差动变压器式位移传感器加工时保证磁路对称的重要性。  相似文献   

4.
根据时栅传感器的测量原理,提出一种采用高频时钟脉冲作为测量基准的变耦型时栅位移传感器以提高位移测量的精度。该传感器通过改变激励线圈和感应线圈的耦合状态输出感应位移变化的行波信号来实现精密位移测量。进行了建模和仿真,研究了不同测头姿态下传感器的位移误差特性,并对其进行了谐波分析,得到了不同测头姿态对位移测量误差各次谐波的影响规律。根据传感器模型制作了传感器并开展了验证实验。仿真和实验结果均表明:不同测头姿态对位移测量误差的影响主要体现在对测量误差的1次、2次和4次谐波上,且俯仰姿态引入的附加误差最大,其余测头姿态下引入的位移测量附加误差均较小。若保证较佳的测头姿态,传感器在定尺和动测头间气隙厚度为0.3mm时的原始误差约为±18μm。实验分析结果与仿真结果基本一致。  相似文献   

5.
针对现有高精度位移传感器栅距小导致对制造和使用环境要求苛刻的问题,提出一种采用高频时钟脉冲作为测量基准,可在大极距条件下实现高精度、大量程直线位移测量的变耦型时栅位移传感器。传感器通过在交变电磁场中改变励磁线圈和磁场拾取线圈的耦合状态建立以时间差反映位移变化的行波信号,实现精密位移测量。通过有限元分析软件对传感器进行了建模和仿真,根据仿真结果得到传感器仿真模型的测量误差,并对其进行了谐波分析;根据误差特点和变化规律对主要误差进行了溯源,并对模型进行了优化。根据优化模型制作了传感器实物,开展了验证实验。实验结果表明:根据仿真结果对传感器进行优化设计,在200 mm的测量范围内,传感器精度达到±500 nm,且系统成本低廉,极易制造。为时栅位移传感器在恶劣环境中的应用提供了解决方案和理论依据。  相似文献   

6.
为了提高磁场式时栅位移传感器的测量精度,分析了该时栅的测量原理。针对其测量过程中出现的激励信号源误差、合成行波非线性误差等问题,提出了信号处理的新方法。通过比较两路感应驻波信号的电压幅值,产生一路相位与时间量及被测位移量相关的方波信号,根据此方波的相位解算出被测位移量。基于该方法建立了数学模型,并进行了仿真分析。通过实验验证了该方法的可行性与有效性,证明该方法对磁场式时栅位移传感器输出信号的处理具有广泛的适用性。  相似文献   

7.
大型机床在实现全闭环数控过程中,现有测量方法存在回转工作台无法同轴安装角编码器、安装要求高、精度无法保证等方面问题,本文提出一种适用于大型、中空回转工作台角度测量的寄生式时栅位移传感器。传感器通过在两路空间正交的励磁线圈中通入两相时间正交的励磁信号,利用磁导调制方法得到相位差直接反映空间转角的电行波信号,从而实现精密角位移测量。建立由4个传感单元组成的传感器模型,采用电磁场有限元仿真软件建模并仿真,对仿真结果进行误差分析和溯源;根据分析结果对传感器进行结构优化并仿真验证;根据优化模型制作传感器实物,搭建试验台进行实验验证。实验结果表明,在整周范围内传感器测量精度达到±2″,实现了高精度测量,为寄生式时栅的进一步开发应用提供了理论依据。  相似文献   

8.
针对前期研制平面磁场式直线时栅位移传感器存在的端部效应致使匀速运动坐标系均匀度降低的问题,提出了一种抑制平面线圈端部效应的方法,构建均匀性更高的交变磁场,并研制出了一种可抑制端部效应的新型平面直线时栅位移传感器。建立了平面线圈励磁数学模型,分析端部效应对均匀磁场的影响程度,提出了双层互补式激励线圈结构抑制端部效应方案;建立了新型平面直线时栅位移测量模型,采用空间正交的双列激励单元,实现了行波信号的合成并通过仿真验证了方案的有效性;建立了仿真模型,分析端部效应对传感器测量精度的影响,并优化传感器参数;基于PCB工艺制造了量程为228 mm的新型传感器样机并与传统传感器样机展开了对比实验,实验结果表明,新型平面直线时栅位移传感器能够有效地抑制传感器的端部效应,提高测量精度,传感器对极内原始测量精度从±20μm提高到±10μm。  相似文献   

9.
李兵  孙彬  陈磊  魏翔 《光学精密工程》2015,23(7):1939-1947
以点激光位移传感器(HL-C211BE)为对象,研究它在自由曲面测量中的应用。针对激光位移传感器因测点倾角代入的测量误差,提出了一个可以量化的倾角误差模型。基于直射式点激光三角法原理,分析了激光光路的几何关系,从会聚光斑光能质心发生的偏移推导出倾角误差模型。随后,用高精度激光干涉仪和正弦规对激光位移传感器进行校对实验,并用误差模型对测量结果进行补偿。结果显示,补偿后激光位移传感器的测量精度得到明显提高。对一非球面凸透镜进行了实验测量,得到了自由曲面测点倾角的计算方法,并用倾角误差模型修正了测量数据。实验结果表明,量化的倾角误差模型可以将激光位移传感器的测量误差控制到小于10μm,满足激光位移传感器在自由曲面测量中应用的要求。  相似文献   

10.
针对数字化精密机械加工装备和测量仪器中的关键功能部件———位移传感器测量精度过分依赖高精度加工的难题,提 出基于组合测量方式的新型位移传感新方法。 利用在平面上均匀分布的激励绕组产生交变磁场,构建运动参考系,建立位移和 时间基准之间的映射关系。 通过控制感应绕组的形状实现磁场精确约束,从原理上抑制谐波误差。 采用差分排布的感应绕组 式及组合测量方式增强抗干扰性,提高位移测量精度。 通过电磁仿真验证,进行测量误差分析,优化结构参数。 研制了传感器 样机并进行实验验证,结果表明在 144 mm 测量范围内,测量误差为±2. 25 μm,分辨力为 0. 15 μm。 不同于传统高精度位移传 感器严重依赖高精度光刻制造加工,此方法通过对磁场的精确约束和传感原理创新实现精密位移测量,具有结构简单,成本低 等优势具有重要学术和工程应用价值。  相似文献   

11.
朱革  张超  付敏  潘帅嘉  雷川 《光学精密工程》2017,25(8):2011-2022
针对现有光栅精密刻划加工难度大制约测量精度的问题,设计了一种以交变光场为测量媒介的时空耦合线性位移测量系统。该测量系统利用四路正交的交变光场与四组正交的正弦透光面调制耦合形成电行波信号实现高精度位移测量。在对测量系统测量原理分析的基础上,建立了该系统的理论模型和误差模型,通过仿真详细分析了该系统在时间相位不正交、空间相位不正交以及结构安装不平行时的误差规律。开展实验验证了一次、二次和四次谐波的产生原因,根据误差来源改进了测量装置的结构,优化了相应的参数。实验结果表明:在180mm测量范围内,用栅距0.6mm的测量系统实现了±0.4μm的测量精度。该测量系统规避了现有光栅精密刻划的问题,结构简单、安装方便,为光学位移测量提供了新思路。  相似文献   

12.
为了解决采用两套高精度一维传感、装置测量二维位移时存在的测量系统复杂、检测同步性难保证和解耦运算复杂等问题,提出了一种基于差动结构的二维感应信号直接解耦方法,用于研究一种平面线圈型二维时栅位移传感器。立足于传统电磁式时栅技术,构建了二维位移直接解耦测量模型,并设计了传感器的基本结构。利用ANSYS Maxwell 建立了传感器三维结构模型并进行了电磁仿真,并对仿真结果进行误差分析和溯源。基于此研制了传感器样机并进行了实验。实验结果表明:样机在79.2 mm×79.2 mm测量范围内,X方向误差为91 μm,Y方向误差为74 μm,可实现二维位移同步检测和直接解耦测量,且测量系统结构简单、体积小,对研究更高性能的二维时栅具有重要参考价值。  相似文献   

13.
为提高嵌入式时栅角位移传感器测量精度,从传感信号形成机理出发,对短周期误差成因进行了详细分析。通过对绕组等效分析和激励信号分析,确定了短周期误差的主要特性为一次和二次误差,一次误差来源为零点残余误差和直流分量误差,二次误差来源为激励信号正交误差。针对短周期误差补偿,提出了基于超限学习机的误差补偿方法,通过对测量值与真实值样本的训练得到模型最优参数,根据模型参数建立短周期误差模型,利用所得误差模型实现对短周期误差的补偿。实验结果表明,短周期误差分析结果与传感器实际误差特性一致,采用该补偿方法传感器短周期误差大幅度降低,降低了约96%。对比和重复性实验表明,该方法与谐波补偿法相比精度提高了约1倍,误差补偿效果更优,同时方法具有良好的测量稳定性,对提高嵌入式时栅角位移传感器的测量精度具有重要的理论和现实意义。  相似文献   

14.
为了简化六自由度并联机构的参数标定过程,提高标定效率,降低标定成本,提出了基于正交位移测量系统的位姿测量装置及方法。首先,研究了该装置的位姿解算方法,利用空间解析几何的方法,求解其运动学正解与逆解。其次,利用微小位移合成法,建立了并联机构及正交位移测量系统组合体的误差模型。然后,基于误差模型,构建了组合体参数误差辨识的最优化问题数学模型,其中,传感器示值的平方和最小为目标函数,组合体的结构参数误差为设计变量。最后,利用正交位移测量系统对六自由度并联机构位姿进行测量,利用OASIS奥希思软件直接搜索出参数误差最优解,将其补偿到并联机构控制系统中,完成并联机构的参数标定。标定前后位姿误差对比表明:最大位置误差降低了58%~96%,最大姿态误差降低了92%~97%。利用正交位移测量系统进行并联机构参数标定,不仅可有效提升并联机构的定位精度,还可有效简化标定工作,提升标定效率,降低标定成本。  相似文献   

15.
图像式角位移测量装置中,光栅的安装偏心标定结果直接影响着角位移测量的精度。为此,本文设计了一种用于调试图像式角位移测量装置光栅偏心度的系统。首先,根据图像式角位移测量机理,提出了基于线阵图像传感器的标定光栅偏心度监测原理;然后,在图像传感器上建立了偏心调试监测信号的模型,并提出存在偏心时偏心监测信号的变化机理;最后,对某型号角位移测量装置进行了实验,并给出了调试建议。实验表明,经过调节误差均方差由1017″降低到12.8″。本文设计的偏心监测系统能够实现对标定光栅的高精度安装调试,提高了图像式角位移测量装置的批量生产效率。  相似文献   

16.
电容式位移传感器的线性度标定与不确定度评定   总被引:1,自引:0,他引:1  
由于光刻投影物镜装调中电容传感器的线性度指标不能够满足位移调节精度的需求,本文提出了一种提高电容传感器测量线性度的方法。该方法采用压电驱动器提供位移进给;采用高精度激光测长干涉仪校准电容传感器的线性度,提供位移反馈以保证运动控制精度。采用高阶曲线拟合方法得到拟合系数对传感器线性度进行在线标定;对标定实验中的环境、安装、机构以及控制等进行不确定度分析与评定以保证电容传感器的线性度测量精度;最后进行电容传感器线性度的标定实验。实验结果表明:本文提出的线性度标定方法能够减小各误差项对于测量结果的影响,标定后传感器线性度由0.047 14%提高至0.004 84%,近一个数量级,并且线性度重复性较高,重复性偏差为0.38nm,全行程内线性度的合成不确定度为5.70nm,能够满足光刻物镜中位移控制精度的需求。  相似文献   

17.
为了进一步溯源时栅位移传感器磁场耦合过程引起的误差,对时栅位移传感器在构造场中的耦合特性进行研究,并研制了一种基于指数形平面线圈结构的新型直线时栅位移传感器。建立传感器工程构造磁场的数学模型,分析传感器耦合间隙对线圈耦合平面磁场分布的影响,研究不同形状平面线圈的耦合特性;根据传感器的耦合特性,构建了一种新型直线时栅位移传感器测量模型,对该模型进行了电磁场有限元仿真和仿真误差分析,得出该结构最佳感应间隙为0.4 mm;对传感器的结构误差进行了溯源分析,进一步优化传感器的结构;搭建实验平台,利用双层PCB绕线工艺加工传感器定尺和动尺,对优化前后的传感器样机开展对比实验。实验结果表明,设计的基于指数形平面线圈结构的新型直线时栅位移传感器可以有效抑制传感器的四次误差,新研制的传感器样机的原始测量精度在原有的基础上提高了45.8%。  相似文献   

18.
本文提出了一种反射绝对式纳米时栅位移传感器的传感方法。采用反射单列式传感器作为反射绝对式传感器的精密测量部分,记为传感器A。为了实现绝对位移测量,设计了一个与传感器A相差一个周期的反射单列式传感器,记为传感器B,利用传感器A与传感器B相位作差实现绝对位移测量。采用标准印刷电路板技术制作了传感器样机,搭建了实验平台,进行了实验测试。测试结果表明,激励电极引线方式对接收电极带来干扰,从而造成一次谐波误差。为了抑制误差,提出了交叉反射结构和分时方法,交叉反射结构将感应电极与另一端的反射电极引线相连,增大激励电极和接收电极的距离,分时方法通过不同时间段对传感器A和传感器B施加激励信号,并把不工作的电极接地。实验表明该结构和方法相互配合有效的抑制了干扰,最终在400 mm范围内,补偿后实现了±300 nm的测量精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号