首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
高速铁路进一步提速会面临巨大能耗、气动噪声和横风失稳等问题,构建真空环境形成管道运输可以很好地解决以上运营问题。依据最小空间尺寸计算克努森数判断真空管道内流体流动状态,考虑三维非定常可压缩效应建立列车和真空管道耦合的真空空气动力学计算模型,分析列车运行速度、真空管道真空度、阻塞比和环境温度对列车气动阻力的影响。研究表明,列车运行气动阻力与运行速度成抛物线递增关系,与管道压力成线性递增关系,与阻塞比成线性递增关系,与环境温度成线性递增关系;列车运行速度越高,真空管道真空度越低,阻塞比越高,环境温度越高,列车运行气动阻力越大。研究成果为克努森数特征长度的取值、真空管道内流体流动状态的判断、真空空气动力学数值计算的开展和真空管道交通列车气动阻力的分析提供理论依据。  相似文献   

2.
邱利伟  王金  支锦亦  王超 《机械设计》2019,36(6):139-144
为提升动车组列车设计方案气动外形的选型效率,保证列车良好的气动性能,提出基于数值模拟方法的高速动车组列车气动性能评估模型,并利用流体力学分析软件Fluent对时速400 km/h的7种型号的8编组动车组列车设计方案进行气动性能分析,包括各车体及整车的压差阻力、阻力、阻力系数、升力、升力系数等气动参数。结果表明:整车的压差阻力、整车阻力、整车阻力系数、尾车升力、尾车升力系数在揭示最佳气动外形方案时结果基本是一致的。提出的列车气动评估方法和气动参数有利于对列车设计方案中的最佳气动外形选型。  相似文献   

3.
真空管道列车运行环境变化复杂,研究管道内部气动现象对真空管道列车设计及优化等具有重要意义.利用收敛-扩张进气道理论阐明亚音速真空管道列车壅塞机制.建立考虑悬浮高度的二维亚音速真空管道列车数值模型,利用重叠网格技术研究了真空管道列车运行前方的气动壅塞现象与尾部的激波现象.结果表明:重叠网格技术适用于数值模拟真空管道列车气动特性.管道内列车前方的壅塞高压区域长度随着运行速度的增加而降低,随着运行时间的增加而增大,且壅塞高压区长度与列车运行速度和时间均呈线性关系.列车尾部区域存在膨胀波和激波,尾部激波长度随着运行速度的增加而增加.由于悬浮间隙的存在,列车尾部激波呈现上下不对称现象.通过理论和仿真计算相结合方法揭示真空管道列车运行前方气动壅塞现象产生机制,得到了列车后方的非对称尾部激波现象.  相似文献   

4.
真空管道列车高速飞行时产生的激波簇对于车辆结构气动外形设计具有重要的指导作用。鉴于真空管道超级列车现有试验设备及方法的局限性,根据可压缩N-S方程和SST k-w湍流模型,基于计算流体动力学(Computational fluid dynamics,CFD)流体分析软件,结合动网格和动态自适应网格两种方法,对超级列车在高真空度管道中高速运动时产生的流场结构进行数值仿真,主要研究列车以1 250 km/h的速度在阻塞比为0.2、环境压力为10.132 5 Pa(0.000 1 atm)的管道中飞行时所产生的一系列激波簇结构及管内流场变化规律。研究结果表明,管内列车在管内飞行时产生弓形激波、正激波、反射激波、Lamda激波、菱形激波等激波簇结构;头车附近区域会出现弓形激波、反射激波向正激波转化的过程,中间车附近区域会出现反射激波、菱形激波产生、发展与消失的过程,尾车附近区域会出现Lamda激波、反射激波、菱形激波、正激波的发展过程。  相似文献   

5.
为研究高速列车转向架区域的气动性能及流场规律,建立列车空气动力学模型,基于SST k-?两方程模型对运行速度分别为250 km/h、300 km/h和350 km/h的高速列车气动性能进行了数值模拟,分析动车及拖车转向架各部件对列车气动性能的影响。计算结果表明:列车运行速度对转向架阻力的影响是显著的,其中对头车转向架影响最大;头车转向架的阻力占总转向架阻力的54.9%,其中构架和轮对分别占35.6%和46.5%,部分部件由于前后压差形成负阻力;拖车转向架的流场结构比动车转向架更加复杂,闸片等部件对转向架区域的流场结构有显著影响;转向架区域外形和设备舱隔墙倾角也会影响其流场结构,斜角入口比直角入口的流场结构更加复杂。  相似文献   

6.
超高速真空管道列车产生的气动热效应不容忽视。根据二维轴对称可压缩N-S方程、Sutherland三方程模型和SST k-ω湍流模型,运用动网格和动态自适应网格两种方法,对车速为1 250km/h的超级列车在低压管道中飞行时所产生的流场结构及气动热变化规律进行了深入研究。研究结果表明,伴随着弓形激波、正激波、反射激波、菱形激波等激波簇结构的变化,击中车身的激波会引起蒙皮表面产生明显的瞬时温升;列车温度边界层从头车车窗下方开始,沿车身向后逐渐变厚,在尾车车身处达到最大,而后在尾车肩部变薄,接着继续增厚,直到边界层分离;头尾车司机室窗户附近温升最大,且最大温度主要出现在头车司机室窗户;随着列车不断运动,不同车厢的气动力及其周围的温度分布逐渐趋于稳定,达到平衡状态。研究成果为超高速真空管道列车蒙皮结构防热材料设计奠定一定基础。  相似文献   

7.
刘小燕  陈春俊  王亚南 《机械》2014,(12):1-4,58
采用计算流体力学的数值计算方法对基于三维、瞬态、可压缩Navier-Stokes方程和κ-ε两方程紊流模型进行求解,模拟高速列车单车通过隧道时列车外流场的特性,分析高速列车单车通过隧道的压力波特性及阻力变化规律。结果表明列车单车通过隧道的压力波最小负压值与速度为二次函数的关系,列车阻力主要由压差阻力构成。研究结果可为解决隧道空气动力学问题提供参考依据。  相似文献   

8.
基于域动网格技术的列车外形对气动性能的影响研究   总被引:1,自引:0,他引:1  
为解决隧道与列车相对运动的问题,将域动网格技术应用到列车隧道效应研究中。通过建立高速列车隧道物理模型,采用有限体积法求解三维可压缩非定常流动模型以及双方程湍流模型,开展了高速列车穿越隧道时的非定常流场的数值模拟。研究了列车头型对列车尾涡的影响,列车头型对列车车身表面压力的影响,车长对列车摩擦阻力和列车压差阻力的影响。在计算结果的基础上对高速列车的头型和车长进行了评价。研究结果表明:列车头型的流线化程度越高,列车的气动阻力越小,列车尾涡涡心越低;列车长度对列车的压差阻力影响不大,对列车的摩擦阻力影响较大;通过数值计算得到的结果可以为列车头型的设计提供理论依据,为列车车长的定型和列车减阻提供参考。  相似文献   

9.
为解决隧道与列车相对运动的问题,将域动网格技术应用到列车隧道效应研究中.通过建立高速列车隧道物理模型,采用有限体积法求解三维可压缩非定常流动模型以及双方程湍流模型,开展了高速列车穿越隧道时的非定常流场的数值模拟.研究了列车头型对列车尾涡的影响,列车头型对列车车身表面压力的影响,车长对列车摩擦阻力和列车压差阻力的影响.在计算结果的基础上对高速列车的头型和车长进行了评价.研究结果表明:列车头型的流线化程度越高,列车的气动阻力越小,列车尾涡涡心越低;列车长度对列车的压差阻力影响不大,对列车的摩擦阻力影响较大;通过数值计算得到的结果可以为列车头型的设计提供理论依据,为列车车长的定型和列车减阻提供参考.  相似文献   

10.
作为输送介质的各种管道,广泛地应用于工业设备中。管道按材质可分为碳素钢、合金钢、不锈钢、铸铁及有色金属等几种。按设计压力可分为真空管道、低压管道、中压管道、高压管道和超高压管道。  相似文献   

11.
高速列车通过隧道过程中引起隧道内压力的剧烈波动,会诱发车内压力波动并可能引起车体疲劳破坏等问题。而研究此类问题的基础在于快速准确预测隧道压力波。基于一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法,对单车通过隧道和两列车隧道内交会进行数值模拟。选取京沪高速铁路隧道为研究对象,通过全时间区域下隧道空间中的压力传播的过程图描述压力波的形成过程,给出隧道内交会压力波比单车通过隧道的压力波剧烈的原因,研究列车速度和阻塞比对车外最大压力值和最小压力值的影响特性。结果表明,高速列车通过京沪高铁典型长度隧道时,其车体表面承受的最大压力波动基本与车速的平方成正比,而其与阻塞比基本呈线性关系。  相似文献   

12.
强风雨环境下高速列车运行安全特性   总被引:1,自引:0,他引:1  
于梦阁  刘加利  李田  张骞 《机械工程学报》2021,57(20):172-180,193
为确保高速列车在强风雨环境下安全运行,结合EULER-LAGRANGE方法和计算多体动力学方法,系统地研究风雨环境下高速列车的气动特性及运行安全特性。基于非球形雨滴,建立高速列车空气动力学计算模型,并验证计算模型的准确性,进而计算强风雨环境下作用于高速列车的气动载荷。建立高速列车车辆系统动力学模型,计算强风雨载荷作用下的高速列车运行安全特性。研究结果表明,在不同风速下,高速列车的侧力、升力、侧滚力矩及摇头力矩均随降雨强度的增加而增大,且与降雨强度近似成线性关系,对于点头力矩,当风速较小时,点头力矩随降雨强度的增加而增大,而当风速较大时,点头力矩随降雨强度的增加而减小。与单纯的强风环境相比,降雨使得高速列车的运行安全特性进一步恶化,在不同风速下,高速列车脱轨系数、轮重减载率、倾覆系数及轮轴横向力均随降雨强度的增加而增大,特别是当风速接近于临界风速时,降雨对高速列车运行安全特性的影响显著。当降雨强度为500 mm/h时,由不同运行安全指标确定的高速列车安全运行的临界风速降低2.3~4.2 m/s。研究结果可为高速列车在风雨环境下的安全限速提供参考。  相似文献   

13.
张亮  张继业  李田 《机械工程学报》2017,53(22):152-159
为改善高速列车明线运行时的气动性能,基于伴随方法和径向基函数网格变形技术,开展高速列车头型气动优化设计。采用径向基函数网格变形技术,避免列车头型优化过程中的网格重复生成,提高头型优化的效率。通过伴随方法求解目标函数对列车头型的敏感度,无须定义任何的头型设计变量,避免人为指定设计变量对优化结果的影响。将网格变形技术、伴随方法及计算流体动力学(Computational fluid dynamic,CFD)方法相结合,构建高速列车头型优化设计流程,选取整车气动阻力和尾车气动升力为优化目标,对高速列车头型进行多目标气动优化设计。结果表明:伴随方法可以有效地应用于高速列车的头型优化;优化后,在满足约束条件的情况下,列车的整车气动阻力减小2.83%,尾车气动升力减小25.86%;气动阻力减小主要位于头尾车流线型部位,中间车和头尾车车体气动阻力基本保持不变;尾车气动升力减小主要位于流线型部位,尾车车体向下的升力绝对值也有所减小。  相似文献   

14.
为改善高速列车的横风气动性能,建立高速列车流线型头型的多目标优化设计方法,以横风下高速列车的侧力和升力为优化目标,对高速列车流线型头型进行多目标自动优化设计。建立高速列车流线型头型的参数化模型,提取出5个优化设计变量,利用计算流体动力学方法进行高速列车流场计算,并结合多目标遗传算法,实现横风下高速列车流线型头型的自动寻优设计。通过相关性分析,得到影响侧力和升力的关键优化设计变量,并进一步研究关键优化设计变量和优化目标之间的非线性关系。经过多目标优化设计,获得一系列的Pareto最优头型,这些头型的横风气动性能均得到明显改善。同时为保证无风环境下高速列车的基本气动性能不发生恶化,最终筛选出8个Pareto最优头型。对于这8个Pareto最优头型,相对于原始头型来说,横风下的侧力最多可降低3.06%,横风下的升力最多可降低19.60%,无风时的气动阻力最多可降低4.51%,无风时的气动升力最多可降低9.68%。  相似文献   

15.
Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the mini-mum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the bench-mark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coef-ficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train's stability can be more comprehensively analyzed,with more safety metrics being considered.  相似文献   

16.
段丽丽  高广军 《机械》2014,(7):18-21
采用结构网格对计算区域进行离散,采用DES湍流数值模拟方法,研究高速列车尾部横向、竖向或斜向地安装扰流板对车的气动性能影响,找出扰流板安装的合理方向。研究结果表明:安装横向或竖向扰流板后,尾部的气动阻力变大,升力减小,而安装斜向扰流板后,尾部的气动阻力与升力均减小。因此,列车尾部扰流板的合理方向为斜向安装。  相似文献   

17.
为改善高速列车气动性能,建立一套高效的多目标气动优化设计方法,对流线型头型进行多目标气动优化设计。建立高速列车流线型头型三维参数化模型,并提取5个优化设计变量;为减少优化设计时间,利用最优拉丁超立方设计方法在优化设计空间中进行均匀采样,利用计算流体力学方法获得对应于各个采样点的气动载荷,利用Kriging代理模型构建优化设计变量和气动载荷之间的近似模型;利用多体系统动力学方法计算气动载荷作用下的高速列车轮重减载率;以气动阻力和轮重减载率为优化目标,利用多目标遗传算法NSGA-II对高速列车流线型头型进行多目标优化。优化设计变量和优化目标均呈现收敛的趋势,采用Kriging近似模型优化计算的Pareto前沿与采用CFD(Computational fluid dynamics,CFD)优化计算的Pareto前沿较为接近。优化后高速列车的气动阻力最多可降低3.27%,轮重减载率最多可降低1.44%,气动阻力最优的头型与轮重减载率最优的头型的主要差异在于中部辅助控制线的变化,前者向内凹,后者则向外凸。  相似文献   

18.
To explore the need for a roof apparatus for an electrical device, such as a pantograph cover or additional cover, the total aerodynamic drag of HEMU-430X, which is a high-speed train developed in South Korea with a maximum speed of more than 400 km/h, was experimentally analyzed using wind-tunnel testing. Experimental models were selected to a 1/20-scale, 5-car HEMU-430X model and three types of pantograph covers (A streamlined type and two wedge types), along with an additional cover. The experimental Reynolds numbers were 370000–620000. The aerodynamic drag of each car was simultaneously measured using load cells. First, the aerodynamic drag of each car without any roof apparatus was analyzed as the baseline model. Second, according to the variations in the three types of pantograph cover configurations, the aerodynamic drag of each car with pantograph covers was compared with the aerodynamic drag of the basic model. Third, the aerodynamic drag of each car with a pantograph cover and additional cover was compared with the results of the baseline model and baseline model with the pantograph cover. Finally, the aerodynamic drag due to the roof apparatus for an electrical device was investigated and analyzed.  相似文献   

19.
In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe’s FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the strain passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e. impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号