首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选带细化超声流量计试验分析   总被引:1,自引:0,他引:1  
文中研究一种用于工业密闭管道流体流量测量的新型超声波多普勒流量计。采用中频调制为基础提取流体流速的方向信息,引入选带细化频谱分析技术(Z00M—FFT)对解调后的超声波多普勒信号进行频谱估计,并以此为基础计算管道流量。该方法能判断流速的方向;降低流速测量下限;提高了流速测量的动态响应速度、实时性以及稳定性。实验表明选通细化超声流量计准确度等级为1.5级。  相似文献   

2.
Based on the well-known algorithm of the most likely estimates of the center frequencies of a normal narrow-band random process with a fractional rational spectrum, a similar algorithm for a process with a Gaussian spectrum is proposed and investigated by computer simulation. The practical importance of the development of algorithms for efficiently estimating the parameters of such processes is that they are a sufficiently close model of the output signal of laser Doppler systems used to study hydrodynamic and aerodynamic flows, measure the velocity of diffusely reflecting solid objects, and perform laser sensing of the atmosphere. The results of the studies show that the proposed algorithm does not shift estimates of the Doppler frequency (velocity), gives fairly accurate estimates (for a Doppler system with 25 interference fringes in the measuring volume at a measurement time equal to 100 Doppler periods, the error is only 0.12%), has high noise immunity, and evaluates the resulting errors.  相似文献   

3.
Ultrasonic pulse-echo systems can provide range-finding, time-position and real-time two-dimensional images of soft-tissue structures within the body. The Doppler effect can be used to study motion and blood flow. Continuous wave Doppler instruments provide information about velocity and direction of flow; depth discrimination can be obtained by pulsing the ultrasound. Two-dimensional Doppler flow imaging can be achieved by manual scanning of a probe over the skin surface. The combination of real-time pulse-echo imaging with pulsed Doppler blood flow detection in the duplex scanner makes it possible to localize the anatomical position of the Doppler sample volume. Real-time Doppler colour flow imaging combines traditional ultrasonic scanning with a two-dimensional flow map. Using appropriate ultrasonic instruments, blood flow volume rates, blood flow velocity profiles, pressure gradients, orifice areas, flow disturbances, jets, characteristics of blood vessels and the circulatory system, and tissue perfusion can all be investigated. These investigations have clinical applications in the study of cardiac, cerebral and peripheral blood flow, blood flow in the female pelvis, the fetus, the abdomen, the neonate, and in malignant tumours. Contemporary ultrasonic diagnosis employs exposure levels that are apparently free from biological risk, but other factors need to be taken into account in considering the prudent use of ultrasonic methods. Promising research is being carried out into the mechanism of ultrasonic scattering by blood, Doppler speckle, time-domain processing for blood flow imaging, methods for increasing the scanning speed, Doppler flow microscopy and contrast agents. The new technology that will result from this research should lead to further substantial progress in ultrasonic blood flow studies.  相似文献   

4.
We developed sample volume tracking units that controlled the pulsed ultrasonic Doppler sample volume location in relation with the anterior-posterior movement of the human left main coronary artery (LMCA). Combined with noninvasive Doppler echocardiographic mechanical sector scanners (DS), the trackers controlled the axial location of the sample volume by range gate control. The Doppler angle was minimized with the long axis of the imaged LMCA. Both stored waveform, memory-driven (MD) and real-time (RT) trackers were developed. These devices were used to measure blood velocity spectral waveforms and lumen diameters, which were used to calculate flow. Using the RT tracker, we compared DS measurements with known flows (0-1000 ml/min) in a moving 4 mm tygon tubing phantom (r = 0.92, SEE = 32 ml/min). Using the MD tracker, we compared the DS with simultaneous invasive flow measurements in 11 patients with angiographically normal coronaries and ventricular function during cardiac catheterization. Using the RT tracker, we compared the DS measurements with subsequent nonsimultaneous, invasive flow data in 8 similar patients. Invasively determined flows were calculated from angiographic diameters and blood velocities which were obtained with a Doppler velocimeter catheter. Regression coefficients (r) were: (Table: see text). V = maximum velocity, D = diameter, Q = mean flow, *p less than .05 Interoperator and intraoperator variabilities in vivo of DS measurements with RT tracking were 21% and 15%, respectively. We conclude that Doppler echocardiography with either MD or RT sample volume tracking may be of limited clinical usefulness in the noninvasive measurement of phasic left main coronary artery blood flow in unselected patients.  相似文献   

5.
6.
A novel ultrasound Doppler measurement system for investigating liquid metal flows is presented. It employs an array of 25 transducer elements allowing a fast electronic traversing with concurrently high spatial resolution and therefore overcomes the limitations of commercially available ultrasound Doppler devices. For a high temporal resolution investigations were performed to parallelize the measurements as much as possible. Their results proved this parallel processing technique allowing a four times higher measurement rate compared to a serial processing for our specific ultrasound Doppler system. Therewith, a first two-dimensional one-componential flow mapping of liquid metal flows driven by a rotating magnetic field was successfully performed. In objective, this measurement system will be extended to a two-componential flow mapping.  相似文献   

7.
An online and non-invasive ultrasound Doppler based rheometric method is proposed to measure the flow parameters in a dilute liquid-solid two-phase flow and analyze its rheological behaviours. The flow rate is obtained by integrating the ultrasound Doppler velocity profiles through annuluses formed across the cross-sectional area of the pipe while the pressure drop is calculated by choosing suitable models that captures the working conditions of quasi-homogeneous and heterogeneous dilute liquid-solid flows. Wall shear rate and wall shear stress are obtained from the above measurements with the rheological measurement models established. An experimental platform is built to form polystyrene-water and sand-water liquid-solid two-phase fluids for tests. The proposed method has mean absolute errors of 2.53% and 3.49% in flow rate measurement and 3.67% and 5.87% in pressure measurement for polystyrene-water and sand-water fluids, respectively. The experimental results have shown that the rheological characteristics of both fluids fit well with the power law fluid model.  相似文献   

8.
Laser-2-focus velocimetry (L2F), laser Doppler anemometry (LDA) and Doppler global velocimetry (DGV) are common measurement techniques for flow analysis, but a fundamental comparison of their minimum achievable measurement uncertainties is still missing. In order to reveal the measurement principle with the lowest uncertainty, the Cramér-Rao lower bounds (CRLB) are derived analytically regarding two inevitable fundamental disturbances: photon shot noise and thermal detector noise. The CRLB results are compared with each other assuming equal temporal resolutions. For both noise sources, a relative uncertainty limit results for L2F and LDA, and an absolute uncertainty limit for DGV. Hence, DGV seems to be appropriate for investigating high-speed flows. However, the threshold velocities strongly depend on the possible viewing angles. The CRLBs are calculated and compared with each other for typical conditions in turbomachinery as an example.  相似文献   

9.
Horizontal oil-water two-phase flow widely exists in petroleum and chemical engineering industry, where the oil and water are usually transported together. As one of most importance process parameters to describe the two-phase flow, the flow pattern can reflect the flow characteristics of inner flow structure and phase distribution. The identification of flow pattern will contribute to develop more accurate measurement model for flow rate or phase fraction and ensure the safety and efficiency of operation in industry. A dual-modality sensor combining with continuous wave ultrasonic Doppler sensor (CWUD) and auxiliary conductance sensor, was proposed to identify flow patterns in horizontal oil-water two-phase flow. In particular, the oil-water flow characteristic was analyzed from Doppler spectrum based on the CWUD sensor. Besides, the dimensionless voltage parameter based on conductance sensor was applied to provide the information of continuous phase in the fluid. Several statistical features were directly extracted without any complicated processing algorithm from Doppler and conductance signals. The extracted features are put into a multi-classification Support Vector Machine (SVM) model to classify five oil-water flow patterns. The results show that the overall identification accuraccy of 94.74% is satisfactory for horizontal oil-water two-phase flow. It also demonstrates that the noninvasive ultrasonic Doppler technique not only can be used for flow velocity measurement but also for flow pattern identification.  相似文献   

10.
Multiphase flow, especially two-phase gas-liquid flow, is of great importance for a variety of applications and industrial processes, for example in the nuclear, chemical, or oil and gas industries. In this contribution, we present simulation results for gas-liquid slug flow in large horizontal pipes. Six test cases with different oil, water, and gas flow rates are considered, which cover a wide range of different slug flows. The numerical predictions are validated by comparison with experimental data obtained from video observations. The relative error of the mean liquid level between experiment and simulation is less than 12.3% for all but one test cases. Furthermore, a frequency analysis is performed. The single-sided amplitude spectrum as well as the smoothed power spectral density are calculated. For both, experimental and simulation data, one observes an increase of the dominant frequencies if the ratio of liquid and gas superficial velocity is increased.  相似文献   

11.
The effect of the inertia of the cross-section bend of tubes with flows on natural frequencies of their vibrations is analyzed. The consideration of the inertia leads to the compaction of the natural frequency spectrum in its high-frequency part. The laminar flow damps vibrations.  相似文献   

12.
In all measurement techniques one seeks accuracy and precision. In ultrasonic Doppler velocimetry, those qualities strongly depend on signal to noise ratio of the Doppler signal and on the performance of the velocity estimator. The most widely used estimation method in ultrasonic coherent Doppler velocimetry is the pulse pair method. Its success is due to the computation efficiency of the algorithm combined to an unbiased estimator. Unfortunately, for a wide range of experimental fluid flows, the pulse pair estimation is less efficient, especially for clear water or concentrated mud where the signal to noise ratio can be very low, or for highly turbulent flows where the Doppler signal has a broad spectrum. Our approach is based on the treatment of the Doppler spectral information. It uses a simple parametric identification inspired by theoretical models and experimental observations. It acts through noise subtraction and subsequent cutting. Thus, we have developed a fast velocity estimation algorithm superior to the pulse pair one in terms of accuracy. The robustness of the method was evaluated by adding different levels of white Gaussian noise to an experimental Doppler signal. The results demonstrate an increase of noise immunity up to one decade compared to the pulse pair method.  相似文献   

13.
万明习  李莉  程敬之 《仪器仪表学报》1999,20(5):451-454,484
本文研究了以超声造影剂为基础的低速血流基波和谱波多普勒测量技术的基本原理,讨论了基于造影剂的多普勒方法的可测低速血流的下降问题,并建立造影基波/谐波多普勒测量实验系统,对自制白蛋白包膜超声造影剂产生的基波及谐波多普勒进行研究,并通过模拟血管血流信号,对比研究基波和谐波多普勒方法在强干扰情况下对低速血流的检测能力。研究表明:造影基波多普勒方法不能从根本上解决组织运动杂波干扰问题,而谐波多普勒技术可测  相似文献   

14.
A method was developed to produce a composite image of microvascular networks with grayscales proportional to volumetric flows. Velocities in arterioles and venules were assessed with a high-resolution laser Doppler imager (LDI). The vascular structures were quantified from the micrograph with a computerized vessel detection algorithm. After registering the detected vascular network with the LDI scan, volumetric flows were calculated along the centerlines of the vessels. In vivo data were obtained from the hamster cheek pouch in 6 studies. Flow continuity of the flow map was evaluated by comparing the main flow (Q) with the sum of branch flows (Qs), averaging over the respective vessel segments incident to each bifurcation. The method was reproducible across the 6 studies with the correlation coefficient (r) between Qs and Q ranging from 0.913 to 0.986. In all, over 20,000 flow estimates from 360 vessel segments (24-160 microm in diameter) at 166 bifurcations were analyzed. With flow normalized between 0 and 1, the linear regression yielded: Qs = 1.03 Q + 0.006; r = 0.952, n = 166, P < 0.0005. The bimodality imaging method exploits a large amount of velocity and diameter data, and therefore should be useful for studying heterogeneous flows in the microvasculature.  相似文献   

15.
针对水平管道油水两相流流速的无扰动测量问题,提出一种基于超声/电学双模态传感器的流速测量方法。测量系统由连续波超声多普勒传感器和基于电容与电导的电学传感器构成,分别用于获取两相流流速和分相含率。由于连续波多普勒的测量区域集中于管道中心,受流速剖面、含率分布影响,所测得流速并非流体的总表观流速。在假设含率分布满足高斯分布的前提下,建立相含率加权的多普勒能量谱模型,将含率分布的影响因素引入总表观流速的测量,并建立总表管流速和分相表观流速的计算模型。在试验基础上,分别确定水连续和油连续时总表观流速计算模型的参数。试验表明,通过模型计算出的表观流速与实际测量的流速能够较好吻合,总表观流速的相对误差小于6.32%,分相表观流速的方均根误差小于5.64%。  相似文献   

16.
17.
Gamma-ray tomography is a technique well suited to visualize gas void fraction distribution in two-phase flows. The liquid phase considered in this paper is a homogeneous mixture of oil and water. Gamma-ray tomography will be used to qualitatively visualize the distribution of gas in the flow, and also to provide more quantitative average void fraction measurements. The subject treatment is practical and experimental with a primary focus on multiphase sampling. Experimental results for total average void fraction are compared to the drift–flux model for two-phase flow by comparing measurements with the calculated slip.  相似文献   

18.
This paper employs a shallow water model and the finite element method to approximate periodical flows of a micropump to a two-dimensional thickness-averaged flow. A liquid-solid coupled system equation of the micropump is presented. Through the mode analysis of the liquid-solid coupled system, the first-order natural frequency, diaphragm vibration shape and amplitude-frequency relationship are obtained. The vibration response of the diaphragm is calculated when an external electric field is applied. Based on the thickness-averaged flow equation, the periodical flow of the micropump is studied using the finite volume method to investigate the flow behavior and flow rate-frequency characteristics. Numerical results indicate that an optimal working frequency can be obtained, at which the flow rate of the micropump achieves the maximum when the external electric voltage is fixed.  相似文献   

19.
An instrument has been developed for instantaneous flow rate measurements of anaesthetic liquids. For periodically time-varying flows, the instantaneous flow rate is reconstructed from the axial velocity time series measured on the centre-line of a pipe. The theoretical background for the method is given and it is demonstrated that fast variations of flow rate can be measured. The instrument is based on a laser Doppler anemometer (LDA) to record the instantaneous velocity on the axis of a capillary; an ultraviolet laser permits velocity measurements with good signal-to-noise ratio from tracer particles in the submicrometer range present in anaesthetic liquids.  相似文献   

20.
Ultrasound systems can be used to investigate blood flow by use of the Doppler effect. The flow information may be displayed as either a real-time sonogram or a two-dimensional colour image. Estimates of maximum velocity using commercial systems are in error by typically 10-100 per cent; this is associated with the inability of the single-beam Doppler method to measure the true direction of flow, and with geometric spectral broadening. Vector Doppler systems acquire Doppler information along two beam directions and are able to measure accurately the velocity and direction of motion within the scan plane. The small beam width of modern Doppler systems means that the condition of uniform insonation, required for estimation of mean velocity from mean frequency shift, is not valid except for the very smallest vessels. Other quantities related to the velocity may also be estimated, such as the volumetric flow and wall shear stress. Flow visualization using colour flow imaging suffers from dependence of the displayed colour on the direction of blood motion. The vector Doppler technique may be extended to colour flow to give improved visualization of flow, in which there is no angle dependence within the scan plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号