首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对四旋翼机器人关键技术进行了深入的研究。首先分析了四旋翼机构特征及其主要的用途。其次,利用了四旋翼的正交的结构特征进行系统设计。再次,根据旋翼机器人的运动特点进行了本体运动控制分析,实现了悬停、前后、水平、俯仰和翻转等运动状态。最后,采用模糊自适应PID控制算法设计了一款位姿控制器,推导出一个非线性动力学仿真模型,用一个PID测试控制器进行仿真,并在真实飞行中成功地测试机器人,达到了一个理想的效果。  相似文献   

2.
为了在执行任务期间精确记录数据和稳定的飞行,多旋翼机器人机构需要能够执行长期任务和携带较重的载荷。针对这一问题,对六旋翼机器人关键技术进行了深入的研究。首先,高性能六旋翼无人机的运行需要飞行控制系统,介绍了六旋翼控制系统和本体的设计方法。其次,构建了四旋翼和六旋翼无人机的数学模型,对比了六旋翼与四旋翼控制系统的优缺点。六旋翼飞行器的飞行控制由推力和力矩完成,在俯仰,偏航和横滚分别对螺旋桨的速度进行运动控制。再次,采用模糊自适应PID控制算法设计了一款跟踪控制系统,用一个PID测试控制器进行仿真。并在真实飞行中成功地测试六旋翼机器人,达到了一个理想的效果。而不是使用分析差异,避免跟踪控制器设计过程中的"差异扩展"。最后,仿真结果证明了所提技术的有效性和有效性。  相似文献   

3.
主要研究8输入6-DOF冗余驱动并联机器人的动力学特性和运动控制方法,首先描述了该机器人的运动学约束条件,并分析其运动学特性;随后采用拉格朗日法建立机器人动力学模型,并设计模糊自适应PID控制器。最后运动学模型、动力学模型及模糊PID控制器进行了仿真,验证了模型的正确性和控制方法的有效性,为并联机器人参数选取和控制方案制定提供依据。  相似文献   

4.
针对双臂机器人的手臂运动控制问题,研究了其动力学建模与伺服系统控制算法。首先,对其双臂机械结构进行了分析,总结了各个关节对机器人末端位姿的影响,并且简化了动力学方程更利于实现。其次针对简化后的模型参数采用最小二乘法辨识,最后通过仿真和系统实验,验证动力学计算结果的正确性。再次由机器人动力学和电机动力学建立关节转矩模型进行关节转矩力控制;最后讨论了交流永磁同步电机的建模和控制问题。经过验证简化后的模型一方面等效于直流电机便于设计控制器,另一方面可用于机器人关节转矩控制。  相似文献   

5.
常规旋翼无人机大都采用共线设计,只能产生竖直方向的推力,极大地限制了旋翼无人机在涉及物理交互任务时的应 用。 针对此问题,研究了一种双倾斜式全驱动六旋翼无人机,采用旋翼转轴非共线的设计方法,可以实现位置与姿态的独立控 制。 提出了一种抑制抖振的改进型积分滑模控制器,并与 PID 控制器、积分反演控制器和传统积分滑模控制器进行对比。 仿真 结果表明,所提出的改进型积分滑模控制器能够实现旋翼无人机位置与姿态的独立控制,并能够有效克服自身模型参数的不确 定性以及外部的风场扰动完成定点悬停与复杂的轨迹跟踪。 实物样机实验结果表明,该设计的全驱动旋翼无人机在长距离横 向运动时能够保持水平姿态, 俯仰角和滚转角误差控制在±2°以内。  相似文献   

6.
为了提高足球机器人在运动控制过程中的轨迹跟踪性能和稳定性,将自适应模糊PID算法用于机器人运动控制环节中,对PID参数进行实时调整。建立足球机器人在场地上的控制系统模型,分析机器人在轨迹跟踪中由驱动方向、角度等时变因素导致的实际轨迹发生偏移的问题,分别在MATLAB-Simulink和SimRobot仿真平台对优化算法的性能进行仿真,同时与传统的PID控制进行对比。实验结果表明,自适应模糊PID算法相比传统的PID控制器在最大跟踪误差和平均跟踪误差方面分别减少20.18%和29.34%,同时提升了系统的稳定性。该控制算法提升了足球机器人的轨迹跟踪性能,满足机器人在运动过程中的动力学和控制要求,易于在工程中应用。  相似文献   

7.
四旋翼飞行器的姿态控制是无人机稳定飞行的关键技术之一。针对复杂多变作业条件下飞行器参数会经常发生变化的问题,在典型控制方法的基础上提出一种自适应的智能控制方法。首先,根据牛顿欧拉定律推导出无人机在地理坐标系下的动力学模型,并对其中参数进行测量计算;然后基于三角形隶属度函数建立模糊控制器,作为外环自主切换的两种控制方式之一,并设置平滑切换过程;最后结合外环对姿态角的控制方法以及内环对角速度快速调整的PD控制方法,实现了无人机串级PID控制方法。仿真和实验结果表明,该系统能够有效控制四旋翼飞行器的飞行姿态。相比较其它算法,其具有更好的鲁棒性和姿态调节的快速性。提升了无人机在飞行过程中抵抗环境扰动和系统动态响应的能力,为四旋翼飞行器控制研究提供了重要的理论与实践基础。  相似文献   

8.
为了简单、准确的实现对柔性连杆机器人慢子系统的控制,应用了神经模糊动态逆自适应控制原理及其控制器的设计方法,建立了柔性连杆机器人的动力学方程,给出了神经模糊系统的学习算法,并进行了系统的稳定性分析,解决了柔性连杆机器人的慢动力学及机器人慢子系统的逆自适应控制问题.  相似文献   

9.
磁导引与UKF滤波定位的轮式AGV路径跟踪研究   总被引:1,自引:0,他引:1  
为实现农用机器人自主导航行走系统在满足较高环境适应性和运动灵活性条件下,能够平稳导航自动路径跟踪.根据农业机器人采摘作业环境要求,构建四轮转向AGV位姿估计的运动学模型,开展了基于模糊控制器的磁导航路径跟踪控制和多传感器信息融合的AGV位姿定位方法研究.试验结果表明:采用模糊控制器能够即时调整AGV车体速度与导向角,UKF滤波器进行数据信息融合的方法能够有效提高AGV位姿定位精度,实现48mm以内的位姿误差和小于4°的航向误差,可为农用轮式AGV应用提供参考.  相似文献   

10.
针对多旋翼无人机系统在航拍中的应用,设计了一种控制相机位姿的地面平台系统。系统的控制原理是基于航点文件,通过控制无人机经度、纬度、高度、偏航和相机俯仰、横滚,实现了对航拍时相机的6个自由度的控制。开发地面平台系统包含位姿控制软件和地面站平台。位姿控制平台加载航点文件并通过地面站平台将航点指令发送给飞行控制器,然后通过飞行控制器引导无人机飞行和相机角度的变化,解决了航拍中相机位姿自动控制和拍摄任务监控的问题。  相似文献   

11.
无人机在水下针对作业任务,需要在不同位置定点悬停。文中对悬停状态的实现提出了悬停平衡模块设计的思想。对悬停水舱-螺旋桨模块进行了运动学分析;对四旋翼结构进行了动力学分析。分析表明,模块化的设计可以使横滚角和俯仰角控制在很小的范围内,而偏航角可以在很大范围内调节,无人机水下悬停可以得到较好的平衡调节。  相似文献   

12.
将PID控制对线性定常系统控制的优势和模糊控制对复杂非线性系统的有效控制相结合,设计了一种基于模糊PID控制算法实现全方位移动机器人的定位导航控制。全方位移动机器人采用四个步进电机驱动全向轮行进,控制器采用传感器位置信息反馈和航位推算相结合导航定位方式,利用模糊PID算法实现纠偏;为克服机器人偏航或高速运动时常规PID控制稳定性不足,采用实时跟踪偏差和偏差变化率来修正PID各参数,实现对机器人导航定位控制,并依据机器视觉和光电编码器确定位置。实验结果表明,利用模糊PID进行全方位移动机器人的运动控制,能够提高导航定位精准度。  相似文献   

13.
四旋翼无人机是一种典型的欠驱动、非线性系统,这类系统要求控制参数能够跟随系统的非线性变化而自适应变化,结合模糊控制和PID控制的优点,提出一种改进型的串级模糊自适应PID控制系统,该系统由角度模糊自适应PID控制、角速度模糊自适应PID控制两部分组成。搭建该控制系统的数学模型,对角度、角速度控制的PID参数进行非线性化模糊整定,通过软件对比仿真角度单级PID控制、角度角速度串级PID控制和角度角速度串级模糊自适应PID控制三种控制策略,仿真结果表明串级模糊自适应PID控制系统的稳定性、快速性和准确性明显优于其余两种控制策略,通过实际飞行试验数据分析表明串级模糊自适应PID控制算法在四旋翼无人机控制系统上能够取得非常理想的控制效果。  相似文献   

14.
针对具有非线性动力学特性的水下机器人的运动控制,提出采用解析式描述的单输入模糊控制器取代常规数字PID控制器中的比例项,并保持原有常规PID控制器的结构和参数不变,得到一种混合模糊P+ID控制方法.研究了水下机器人混合模糊P+ID控制的参数调节方法,并采用小增益定理分析了引入模糊控制后的系统输入输出稳定性.采用水下机器人的非线性动力学模型进行了仿真实验,结果表明提出的混合模糊P+ID控制具有比常规PID控制更好的性能.  相似文献   

15.
为了稳定实现对路灯维修机器人系统的控制,应用了人工神经模糊动态控制原理及其控制器的设计方法,建立了路灯维修机器人的动力学方程,给出了神经模糊系统的学习算法,并进行了系统的稳定性分析,解决了路灯维修机器人的慢动力学及机器人慢子系统的逆自适应控制问题.  相似文献   

16.
复杂环境下,多旋翼无人机整体结构、姿态控制算法对其稳定飞行性能具有重要影响。文中首先从静力学分析及结构模态分析方面进行无人机整体结构的设计研究;然后利用陀螺仪、加速度计、磁力计传感器结合PID控制、多种滤波算法共同实现无人机飞行姿态的控制;最后搭建无人机试验平台进行复杂环境下多旋翼无人机悬停试验。经试验研究表明,研发的多旋翼无人机整机运行稳定,飞行误差为±2°,基本符合预期试验要求。  相似文献   

17.
轮式机器人具有复杂多变的非线性、强耦合以及时变的动力学特点,采用传统的机器人轨迹跟踪控制容易产生较大的速度突变,导致机器人在控制过程中产生抖振现象,为此提出了一种基于参数自适应神经动力力学的轮式机器人轨迹跟踪控制方法。通过运动学分析并建立轮式机器人的位姿误差模型,采用神经动力学设计机器人轨迹跟踪控制器;分析比较不同参数取值与控制量之间的关系,设计了一种参数自适应方法进一步提高轨迹跟踪控制器的性能;最后,通过对所设计的控制方法进行了仿真实验。实验结果表明,所设计的控制方法能够保证机器人拥有较小的速度突变,在出现误差情况下能够以较快速度收敛,在轨迹跟踪上拥有较高的精度。  相似文献   

18.
为了加速并简化四旋翼无人机的设计以及进行相关控制算法的实验仿真和验证,针对四旋翼飞行器的机械结构和飞行原理分析了其系统动力学模型,利用牛顿-欧拉方法推导得到机体非线性动力学方程。为了提高四轴飞行器的建模精度和系统完整性,联合计算机辅助设计(CAD)软件和Matlab/Simscape工具箱进行物理系统建模。利用CAD软件搭建的四旋翼三维实体模型导入到Simscape仿真平台构建四旋翼的机体以及动力系统模型,并在此基础上将Simulink设计的控制算法添加到仿真平台,方便进行实验验证和参数整定。仿真结果表明,所设计的飞行器能够较好地实现悬停和轨迹跟踪,满足系统的控制性能要求。  相似文献   

19.
为了加速并简化四旋翼无人机的设计以及进行相关控制算法的实验仿真和验证,针对四旋翼飞行器的机械结构和飞行原理分析了其系统动力学模型,利用牛顿-欧拉方法推导得到机体非线性动力学方程。为了提高四轴飞行器的建模精度和系统完整性,联合计算机辅助设计(CAD)软件和Matlab/Simscape工具箱进行物理系统建模。利用CAD软件搭建的四旋翼三维实体模型导入到Simscape仿真平台构建四旋翼的机体以及动力系统模型,并在此基础上将Simulink设计的控制算法添加到仿真平台,方便进行实验验证和参数整定。仿真结果表明,所设计的飞行器能够较好地实现悬停和轨迹跟踪,满足系统的控制性能要求。  相似文献   

20.
基于新型LQR的四旋翼无人机姿态控制   总被引:1,自引:0,他引:1  
为四旋翼无人机的姿态稳定控制提出了新的LQR控制器,该控制器能够实现姿态的快速稳定控制并跟踪参考输入。首先,根据假设建立了四旋翼无人机的动力学模型,并在此基础上用泰勒级数展开进行线性化。然后利用线性模型设计了LQR控制器,并对控制器进行了改进。最后使用Matlab/Simulink进行试验仿真,验证了改进后的LQR控制对控制过程响应速度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号