首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新型摆线滚针减振减速器是以传统摆线针轮减速器为基础,在传统偏心轴承和摆线轮之间加入了一种柔性衬垫结构,以减小冲击与吸收振动,降低噪声,保证传动平稳,提高整个设备的性能和寿命。通过对减速器的精确建模和有限元模态分析,得到传统摆线针轮行星减速器、5种不同硬度的柔性材料对应的新型摆线针轮行星减速器的1~10阶固有频率及模态振型规律。根据变化规律选择新型摆线针轮行星减速器的柔性材料,然后将新型减速器、传统减速器的固有频率分别与啮合频率比较,发现新型减速器的固有频率与啮合频率的差值更大,因此,新型摆线滚针减振减速器能够更好地避免共振。  相似文献   

2.
精密RV减速器中摆线轮与针齿壳的啮合传动状态直接决定了整个减速器整机的传动性能,而核心零件摆线轮的模态振动特性对整机动态特性具有重要影响.在建立RV减速器三维模型的基础上,采用有限元法分别分析了摆线轮在自由、轴承约束以及啮合工作三种状态下的模态特性,得到了摆线轮在三种约束状态下的频率分布和振型特性.分析结果表明:在轴承约束和针齿壳约束共同作用的啮合工作状态下,摆线轮模态特性更符合实际工作状态,其固有频率显著提升,且各阶振型也发生了相应变化.该项研究为RV减速器系统的动态特性和啮合特性分析提供了有益参考.  相似文献   

3.
啮合间隙是影响RV减速器摆线针轮传动精度的主要因素,为保证摆线针轮的传动性能,对RV减速器摆线针轮啮合间隙的影响因素进行了分析。通过对比不同修形方式下初始啮合间隙的MATLAB函数图像,得出初始间隙最小、最佳的修形方式。通过理论计算,分析各影响因素对RV减速器摆线针轮啮合间隙的影响程度,进而确定主要的影响因素。  相似文献   

4.
为了保证机器人用高精度RV减速器的运动精度、扭转刚度、传动效率、总体回差和承载能力等要求,分析了摆线轮各齿的接触变形关系,计算了摆线轮齿与针齿的啮合力,进而获得了摆线轮与针轮的同时啮合齿数.采用UG软件建立了RV-40E型减速器模型,并进行ADAMS动力学仿真,探求了含有初始间隙的RV减速器传动时的啮合齿数,为提高减速器整体的传动稳定性、承载能力、扭转刚度等性能提供了理论基础.  相似文献   

5.
精密RV减速器中摆线轮与针齿壳的啮合传动状态直接决定了整个减速器整机的传动性能,而核心零件针齿壳的模态振动特性对整机动态特性具有重要影响.在建立RV减速器三维模型的基础上,采用有限元法分别分析了针齿壳在自由、轴承约束以及啮合工作三种状态下的模态特性,得到了针齿壳在三种约束状态下的频率分布和振型特性.分析结果表明:在轴承约束和摆线轮约束共同作用的啮合工作状态下,针齿壳模态特性更符合实际工作状态,其固有频率显著提升,且各阶振型也发生了相应变化.该项研究为RV减速器系统的动态特性和啮合特性分析提供了有益参考.  相似文献   

6.
针对RV减速器中的针摆传动,建立了一种考虑摆线轮齿廓曲率半径变化的等效扭转啮合刚度计算模型,分析了输入力矩的变化对针摆传动等效扭转啮合刚度的影响。基于Hertz公式,推导了RV减速器中摆线轮与单个针齿啮合刚度随啮合点位置变化的函数关系式,利用摆线针轮传动模型计算实际参与啮合的齿数,进而建立针摆传动等效扭转啮合刚度模型。通过MATLAB软件对模型进行数值仿真,分析了3种不同输入力矩条件下等效扭转刚度曲线的变化规律,分析结果对RV减速器动力学模型研究有一定的理论和工程价值。  相似文献   

7.
《机械传动》2017,(11):120-125
摆线针轮传动部分是RV减速器的关键结构,摆线针轮传动综合啮合刚度的确定是进一步研究RV减速器动态特性的基础。基于Hertz接触理论推导了摆线针轮传动单齿对的等效接触刚度公式,确立了单齿对接触刚度的求解参数,建立了含有以同时参与啮合针齿数为叠加参数的摆线针轮综合刚度模型,为确定同时参与啮合的针齿齿数,在计及摆线轮修形、针轮中心圆直径误差并将摆线轮进行柔性处理的情况下,基于ADAMS对某型RV减速器整机进行了动态仿真;仿真结果直观显示了同时参与啮合的针齿数以及针齿受力受负载的影响效果。  相似文献   

8.
针对RV减速器的传动结构特点,应用Pro/E参数化建模技术,建立了RV减速器的三维实体模型,并以RV-40E为例,采用ADAMS软件对一级传动和二级传动进行运动学与动力学耦合仿真,分析了一级传动和二级传动的动力学特性对RV减速器传动特性的影响,并对其进行整机动力学分析。结果表明:一二两级传动对曲柄轴转速波动均有影响;二级传动导致输出轴转速波动的幅度远大于一级传动;针齿与摆线轮之间的啮合力因曲柄轴自转(摆线轮公转)而呈周期性波动,啮合力幅值随摆线轮修形量的增加而增大;曲拐轴承转动副受力巨大,易导致轴承损坏。研究结果对RV减速器的产品化设计具有重要的参考价值。  相似文献   

9.
在分析RV减速器的传动原理和结构特点的基础上,从系统角度出发,考虑RV减速器两级传动系统耦合变形、摆线轮轮辐结构以及轴承刚度,建立了RV减速器啮合特性分析模型。对RV减速器针摆传动啮合特性进行了仿真分析,具体讨论了摆线轮轮缘厚度、修形量以及载荷大小对啮合特性的影响规律。同时根据所建立的分析模型对RV减速器的扭转刚度进行了分析。最后通过对RV减速器进行了针齿壳齿根压应力实验测试以及扭转刚度实验测试,验证了仿真分析的正确性。  相似文献   

10.
针对RV减速机在使用过程中出现的共振问题,利用有限元分析软件ANSYS对RV减速机内部的核心部件摆线轮进行了自由模态和约束模态分析,通过分析对比两种模态下前20阶固有模态和固有振型,得出了摆线轮结构的薄弱环节位于摆线轮齿廓处,找到了容易引起共振的6阶固有频率分别为673.19 Hz、755.95 Hz、932.35 Hz、1489.7 Hz、1719.1 Hz、1733.2 Hz,对摆线轮进行设计时应该避开以上频率,为进一步研究RV减速机的振动和噪声特性提供了理论依据。  相似文献   

11.
RV减速器传动精度主要受摆线轮传动精度的影响。以RV-80E为研究对象,应用SolidWorks软件对摆线轮进行参数化实体建模,结合ANSYS有限元软件仿真了约束边界和自由边界下摆线轮的固有频率和模态,分析了摆线轮的振动特性。结果表明:摆线轮的最大变形位置为穿透孔外侧的摆线齿廓处。针对结构的薄弱环节进行优化,结构优化后的摆线轮模型在固有特性上得到了有效的改善。  相似文献   

12.
以RV160-E型减速器为研究对象,综合考虑两级传动的影响因素,建立了十六自由度的RV减速器整机动力学模型。根据牛顿定律和广义坐标法建立了关键零部件的动力学方程,计算出系统的固有频率及相应振型。对主要零部件进行了模态分析,计算出它们的固有频率和振型,分析表明摆线轮的固有频率不在整机的固有频率点上,观察振型图发现应提高曲柄轴行星轮啮合处的刚度。分析结果为曲柄轴的优化设计提供了参考依据。  相似文献   

13.
齿廓修形设计是RV减速器摆线轮设计制造过程中的关键环节,但目前摆线轮齿廓修形设计未考虑其齿廓误差和运动精度对齿廓形状的影响关系,为此,提出一种综合考虑齿廓误差和传动误差影响的摆线轮齿廓逆向主动修正方法。通过对RV传动摆线针轮进行轮齿接触分析,以抛物线修形方法中的修形系数ac、常数项系数b、失配参考点处啮合相位φ0角作为齿廓修形变量,以传动误差最小为目标函数,建立齿廓逆向修形数学模型,最终求解得到满足RV传动精度要求的最佳齿廓。该方法综合考虑了摆线齿廓形状变化与啮合特性和传动精度之间的交互影响,同时,在保证啮合特性和运动精度情况下,可获得更加符合工程实际的摆线轮设计齿廓,保证了RV减速器摆线针轮副的装配工艺性,对RV传动性能预控、齿廓修形质量及运动精度改善提供理论和技术支撑。  相似文献   

14.
RV减速器传动精度主要受摆线轮传动精度的影响,摆线轮传动精度的好坏直接影响整机的传动精度,以RV-40E为研究对象,采用SolidWorks对RV摆线轮进行参数化实体建模,然后将模型导入到ANSYS中进行有限元分析,建立动力学模型。用ANSYS软件分析模型的振动和固有频率,为摆线轮的结构参数优化提供基础,从而增加系统的动态稳定性。  相似文献   

15.
摆线针轮啮合间隙对RV减速器的啮合传动性能及运动精度影响很大,因此,啮合间隙的准确计算是摆线针轮接触特性研究中很重要的内容。目前,国内对啮合间隙的计算大多是以理论设计齿廓为基础,未考虑摆线轮在修形设计加工过程中的齿廓偏差,所以,计算得到的理论啮合间隙与实际啮合间隙不一致。为此,综合考虑齿廓偏差的影响,提出一种摆线针轮啮合间隙的新计算方法,从工程和数学的角度获得了轮齿啮合的真实间隙。通过将摆线轮的齿廓偏差在理论齿廓上进行有效叠加,基于非均匀有理B样条重构得到高度逼近实际加工齿面的数字化齿面;根据建立的摆线针轮传动接触分析模型,运用微分几何原理计算针齿中心至摆线轮齿廓的最小距离,得到齿廓偏差影响下的准确啮合间隙值,为RV减速器摆线针轮副的传动性能研究及齿廓修形设计提供了新的思路。  相似文献   

16.
摆线轮是RV减速器中的核心部件,摆线轮的孔型结构对RV减速器的传动平稳度有较大影响。针对摆线针轮传动系统进行啮合接触分析,得到摆线轮在实际啮合过程的实际啮合齿对数,计算出各齿对啮合转角及综合啮合刚度。在有限元软件中,以摆线针轮综合啮合刚度为弹性约束,对摆线轮进行了动态响应分析,摆线轮在扇形减重孔处振动最大,易发生变形。针对摆线轮不同扇形孔结构,采用三因素四水平的正交试验进行了动力学仿真,结果表明,随着摆线轮转速提升,扇形孔的上底圆半径始终是影响摆线轮振动的最主要因素,而倒圆半径的影响力逐渐增强,两腰夹角的影响力逐渐减弱,为摆线轮的结构设计提供了依据。  相似文献   

17.
RV减速器因其精度高、效率高、体积小等优势,在机器人领域占主导地位。摆线轮作为RV减速器的关键部件,直接影响着RV减速器传动系统的各项性能。为了提高摆线针轮的啮合性能,将针齿半径构造为关于转角的指数函数进行修形,建立修形后的齿廓方程。结合算例,对比修形前后的摆线轮齿廓曲线和曲率半径,计算了修形后曲柄旋转0°~360°时摆线轮与针齿的接触压力和传动误差。指数函数修形在摆线轮工作段保持了理论齿廓曲线,克服了传统修形方法修形量偏大的问题,保证了啮合的平稳性,并提高了摆线轮的强度和传动的精度。  相似文献   

18.
摆线轮修形是保证RV减速器优良传动性能的重要手段,为了探求合适的修形方式和具体的修形量,通过建立受载下多种摆线轮修形方式的RV减速器动力学模型,仿真分析得出传动精度和输出转速,用输出转速的方差值来评价运转平稳性,然后利用神经网络训练,得出传动精度和平稳度与修形量间的映射关系,再利用遗传算法将加权传动精度绝对值和平稳度之和作为适应度值,调用已得出的映射关系求出不同修形方式下最小适应度对应的修形量,接着计算已得修形量下的摆线针轮间最大啮合力和同时啮合齿数,结果表明,最佳的负等距加正移距修形方式,使得适应度值最小,但是RV减速器承载能力较差,正等距加负移距修形方式下求得适应度值最大,但是承载能力较好,研究结果为提高RV减速器的传动精度、运转平稳性和承载能力提供了新的摆线轮修形思路和理论基础,具有一定的工程应用价值。  相似文献   

19.
为了研究RV减速器在额定载荷作用下的应力和变形情况,应用ANSYS软件对RV-40E型减速器的主要传动机构——摆线针轮机构和偏心轴机构进行分析。分析结果表明,在额定载荷作用下,摆线针轮机构与偏心轴机构的最大接触应力和最大等效应力均小于所用材料的强度极限。由于受力导致相配合的零件间产生间隙,会降低RV减速器的传动精度,因此在设计、制造RV减速器时需重点关注弹性变形对传动精度的影响。偏心轴的扭转变形较大,刚度较低,对RV减速器的传动精度影响较大,因此在设计、制造RV减速器时需选择合理的材料和工艺,提高偏心轴刚度,进而提高RV减速器的传动精度。  相似文献   

20.
《机械传动》2016,(5):55-60
通过摆线轮齿廓方程在UG环境下建立摆线轮的参数化模型,进而建立RV减速器的三维模型,将模型导入ADAMS软件中,得到RV减速器虚拟样机模型。通过仿真得到输出轴、曲柄轴和摆线轮的转速,考察了摆线轮与针齿的啮合频率,仿真结果为9.73 Hz,与理论结果一致,验证了所建虚拟样机模型的合理性与正确性。建立了考虑误差的8组虚拟样机模型,仿真结果表明,摆线轮修形、针齿销半径误差、针齿中心圆半径误差均对传动精度有较大影响。研究结论为RV减速器的设计提供了一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号