首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
本文给出了高速开关阀阀控气缸系统的单端封闭PWM开关控制的两种工作模式,一种是通过对一定压力气源的PWM断续控制,改变系统的阶跃响应时间,气缸活塞的位移只能通过改变压差调节;另一种是通过气源和大气的PWM交替接入控制,实现占空比一位移/压力或压差一位移/压力比例控制.根据系统的传递函数模型运用仿真的方法得到了动态及静态特性,在此基础上提出单端封闭的阀控气缸系统控制方法,在所搭建装置上进行的实验表明:装置可实现单端封闭气缸活塞位置的PWM定位控制,验证了所提出方法的可行性,为今后高速开关阀的PWM气动位置/压力控制系统构建提供了理论分析和设计基础.  相似文献   

2.
基于流量近似的阀控液压缸动力机构建模   总被引:1,自引:0,他引:1  
由于非对称缸两腔的非对称性,采用与对称缸类似的方法建立其工作点线性模型时,需要对两腔压力微分做更多的近似处理,模型误差较大。在液压缸负载流量线性方程推导过程中,提出采用对两腔流量进行近似处理的方法,得到适用于不同活塞位置的阀控非对称缸统一模型;应用于对称缸,所得结果与采用传统方法得到的相同,表明所得非对称缸模型误差较小。将零位附近负重叠区内伺服阀中液压油通流状态看作液压缸正反向运行时的两种通流流态共存,得出零位附近的流量增益和流量-压力系数计算公式。不同活塞位置、不同阀芯位移等多个工作点仿真测取的模型参数与理论计算结果相差很小,不同工作点的闭环控制试验曲线与基于理论计算模型的仿真曲线一致,表明所得阀控缸模型误差小。  相似文献   

3.
针对目前气动微流控芯片控制系统微型化集成化的需求,提出了一种采用步进电机的微流控芯片气压驱动系统,通过控制器信号驱动步进电机,使PDMS流道产生了形变从而改变了阀口开度,实现了气体容腔的压力控制,对微阀的流量和气体容腔的压力进行了分析,采用Simulink搭建非线性模块,建立了系统的仿真模型,对系统的压力特性进行了仿真,得到了在不同的步进电机阶跃信号作用下的气压驱动系统压力的动态响应特性,并搭建了试验平台进行了验证。结果表明:试验结果与仿真结果基本吻合,该系统能够较快地响应于气压容器,阀口开度越大,气体容器的压力上升越快,稳定压力越高。  相似文献   

4.
采用一种用于求解非线性方程组的遗传算法对辨识获得的系统传递函数进行参数求解,依照解得的系统参数获得系统的开环模型。通过对开环模型进行仿真并与实测输出曲线对比,验证了遗传算法求解液压伺服系统参数的可行性。同时,通过分析仿真结果,找出了材料试验机比例压力控制系统与伺服压力控制系统在辨识方法上的差别。  相似文献   

5.
气压比例方向阀由于其非常高的响应频带,因此在气压伺服系统上具有重要应用。但由于气压比例方向阀采用正遮盖阀口时,在零位附近存在死区,造成此时阀的流量增益、压力增益都非常小,这个特性对于高性能的气压系统定位和轨迹跟踪控制有重要影响。文章通过实验研究比例方向阀的流量特性和压力特性,利用工作点线性化描述阀的特性。采用逆函数法补偿比例方向阀在零位时的非线性特性。对气压系统三阶传递函数模型进行了仿真。仿真和实验结果表明了逆函数补偿法的有效性。  相似文献   

6.
为实现微米级别位移控制,采用伺服驱动器、交流永磁同步电动机和位移放大液压缸代替传统伺服阀和泵源,利用位移放大液压缸与执行液压缸的有效面积比,对执行液压缸进行精确定位。针对其液压系统进行数学建模,讨论液压油弹性模量、油液黏度、蓄能器压力与体积等变量对系统动态性能的影响。建立微位移控制系统AMEsim仿真模型,仿真结果表明:液压油弹性模量越大,系统响应越快;油液黏度越大,系统响应越慢;蓄能器压力与体积对系统响应影响微小,仿真结果与数学模型预测相符。设计试验台并在试验台进行液压系统开环扫频特性试验,使用Matlab辨识工具箱对系统试验数据进行模型辨识,辨识结果表明:二阶系统与试验数据的吻合度较高,与数学模型预测相符。基于辨识模型设计的PD控制器在微位移控制综合平台上得到了应用,位置控制偏差范围为-2~1.7 μm。  相似文献   

7.
为了更好地了解往复式压缩机在不同工况下阀片的运动规律以及气缸内压力、温度的变化情况,对压缩机气缸及阀片运动规律进行了模拟仿真研究。采用有限元分析手段建立了往复压缩机的三维流场模型,在变负荷工况下,运用Fluent软件模拟分析了压缩机气阀与气缸工作状态;在正常工况下,模拟了压缩机气阀的运动情况和气缸内的压力变化情况,并利用往复压缩机实验台进行了实验验证;在气量调节工况和不同的阀片顶开位移的工况下,针对压缩机进行了模拟,得到了不同工况下阀片运动规律、气缸内示功图及气缸内温度变化规律。研究结果表明:针对机组复杂运行状态可用计算机仿真研究进行深入模拟,获得贴近实际运行状态的数据,对分析压缩机运行状态,改进优化气量调节系统具有重要作用。  相似文献   

8.
考虑阀口误差的阀控非对称液压缸系统建模、仿真与试验   总被引:3,自引:0,他引:3  
从解决比例阀控制非对称缸系统存在的超压问题入手,分析因加工误差引起的各阀口重叠量不一致这一非线性因素对系统性能的影响,建立考虑阀口误差的阀控非对称缸系统的非线性状态方程模型和键图模型。应用这两种非线性数学模型分析一实际非对称阀控制非对称缸系统的压力特性,与试验结果的对比分析验证了所建的非线性数学模型的正确性。仿真和试验研究揭示比例阀控制非对称缸系统的阀口误差对系统性能影响较大,往往是引起有杆腔压力超过供油压力的主要原因。通过大量仿真研究获得了阀口误差与系统超压之间的关系,研究表明适当提高比例阀阀口的加工精度有利于消除超压现象和提高系统的性能,进而建议将某些比例阀阀口误差控制在最大阀位移的0.5%以内。给出的两种非线性数学模型具有通用性,可用于对各类阀控缸系统进行系统仿真、设计和控制策略等方面的理论研究工作。  相似文献   

9.
准确建立滚珠丝杠传动系统动力学模型是实现高速、高加速度和高精度运动控制的基础。滚珠丝杠传动系统的动力学特性具有不确定性,实际是随位置、负载质量等变量变化的,数学上应描述为变参数模型。因此,一种滚珠丝杠传动系统线性变参数(Linear parameter varying, LPV)动力学模型实验建模方法被提出。通过局部频域辨识方法获得非参数模型,并采用非线性最小二乘方法得到模态叠加形式的传递函数模型。采用傅里叶级数形式的正交基函数拟合方法,对不同位置下的局部传递函数模型参数进行拟合,获得与位置相关的参数模型。基于拟合结果,选择合适的工况点进行三次样条插值,得到与位置、负载质量相关的LPV模型。所提出方法应用于滚珠丝杠试验台,获得了一个与全局位置、负载质量相关性高的LPV模型,为实现基于LPV模型的高速、高精度运动控制提供了基础。  相似文献   

10.
基于主从控制理论提出一种新的阀控缸电液系统位置和压力主从控制方法。建立阀控缸系统位置传递函数后,将液压缸两腔的压力动态变化信号应用位置-压力转换公式转换为位置信号,再将转换的位置信号叠加到电液伺服系统的主位置闭环内,以实现阀控缸系统位置和压力的主从控制。通过在MATLAB/Simulink中搭建的仿真模型,仿真分析该方法的控制效果,结果表明该控制方法正确可行。通过分析现场样机矫直钢板时液压缸的位置和压力信号,证明电液伺服系统位置-压力主从控制方法可以实现位置、压力不同变量的在线主从控制,提高了系统的响应速度和控制精度,为其他电液伺服系统的设计研究提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号