首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
设计了一种自由曲面抛光并联机器人,对其进行了运动学分析,建立了并联机器人机构位姿逆解方程,并给出了显式解析表达。应用Solidworks2008软件完成了三维实体建模,并利用机械系统动力学分析软件ADAMS对该并联机器人机构进行了运动学仿真和分析,验证了方案的可行性。  相似文献   

2.
基于ADAMS的3-P4R并联打磨机器人运动学仿真   总被引:1,自引:0,他引:1  
本文主要是针对3-P4R并联打磨机器人进行运动学分析,采用动力仿真软件ADAMS对打磨机器人进行运动学仿真。首先,本文采用三维CAD软件solidworks建立了几何模型,以Parasolid格式导入ADAMS环境,对几何模型施加约束与驱动,建立了虚拟样机模型。然后对模型进行了正向与逆向运动学仿真,快速准确地求得了并联机构的运动学正反解,大大简化了计算过程,为并联机构的运动学分析及机构设计提供了依据。  相似文献   

3.
并联机器人的运动学分析是动力学分析的基础,而工作空间是评价并联机器人工作性能的重要指标.对4PUS-1PS型并联机器人进行了逆运动学分析,使用ADAMS软件对其进行仿真,并与MATLAB软件计算的结果相比对.基于运动学逆解,结合机构的约束条件,运用MATLAB搜索其工作空间.为其动力学分析及此类机器人的设计与运用提供依据.  相似文献   

4.
以Delta并联机器人为研究对象,用三维设计软件Pro/E建立其样机模型,通过简化Delta并联机器人机构模型,用D-H矩阵法建立其运动学方程,得出正、逆解,给定动平台的运动轨迹进行轨迹规划,用Matlab软件计算出各支链的驱动臂张角,将样机模型和计算结果导入到ADAMS软件中,添加约束驱动等,进行运动学和动力学仿真分析,所得结果与理论计算结果一致,为Delta并联机器人的设计、优化和运动控制提供依据.  相似文献   

5.
以3-RRRT并联机机器人为研究对象,应用ADAMS软件建立其样机模型并利用该模型对并联机器人的运动学和动力学进行了仿真,实现了3-RRRT并联机器人运动学及动力学性能在计算机上的仿真与分析,为实际的样机调试和控制提供了有意义的借鉴。  相似文献   

6.
以3-PTT型并联机构为研究对象,应用ADAMS软件建立了由静平台、动平台、定长杆等构件构成的并联机构虚拟样机模型。详细论述了建模方法、模型的ADAMS描述、仿真过程,并利用该模型对3-PTT并联机构的运动学和动力学进行了仿真,实现了在计算机上仿真分析并联机构的运动和动力性能,为并联机构设计提供了一套有效的分析方法。  相似文献   

7.
ADAMS在并联机构运动学分析中的应用   总被引:1,自引:0,他引:1  
张静  许东来 《机电工程》2010,27(9):57-60
针对并联机构的运动学分析计算,以3-UPS/UP型并联机构为例,介绍了应用动力学仿真分析软件ADAMS对其进行运动学仿真的方法与步骤。采用三维CAD软件Inventor建立了几何模型,以Parasolid格式导入ADAMS环境,对几何模型施加约束与激励,建立了并联机构的虚拟样机模型。并对模型进行了逆向与正向运动学仿真,快速准确地求得了并联机构的运动学反解与正解,大大简化了计算过程,为并联机构的运动学分析及机构设计提供了借鉴。  相似文献   

8.
根据6-PTRT并联机器人机构及约束特点,对动平台及各支链进行运动学分析,利用虎克铰特性建立各支链动坐标系,计算各运动部件瞬态惯性张量,采用KANE方法推导出该并联机器人动力学模型。利用MATLAB软件和ADAMS软件联合仿真,验证所建立动力学方程的正确性。应用Akima插值法对动力学响应进行优化,结果表明,利用优化后动力学响应驱动各支链可有效提高机构运行稳定性。利用KANE方法建立动力学模型并用Akima插值法优化动力学响应能有效减少计算步骤,并得到平滑的动力学响应曲线,为并联机器人轨迹规划、动力学特性分析及高精度控制提供理论依据。  相似文献   

9.
用三维软件对2-PRR并联机构进行了设计及建模,在ANSYS中对连杆构件用柔性化处理替换了原来的刚性体,通过计算分析了其动力学模态特性。在ADAMS中对2-PRR并联机构进行了运动学和动力学仿真,验证了该机构的正、逆解,并得到了驱动滑块上的驱动力矩变化特性曲线。研究结论为并联机构在雕铣机床和平面抓取机器人中的设计和选用提供了理论依据。所研究的2-PRR并联机构已经在平面雕铣、机器人平面抓取、农业采摘等装备上得到应用。并联机构的动力学分析(正、逆两类问题)是并联机构在机器人、机床动力分析、整机动态设计、动力学尺度综合、控制器参数整定和伺服电机选配的理论基础。  相似文献   

10.
运动学分析是并联机器人机构分析中的首要问题,是进行机构动力学分析、精度分析的基础,而全柔性微动机器人机构的首要目标就是精确实现所需的运动。介绍了平面并联微动机器人伪刚性模型的建立方法,并采用闭环矢量原理建立理论运动学线性模型,得到理论Jacobian矩阵,其次对该机构进行实验分析,得到工作平台的实验输出位移和方位角(Jacobian矩阵);然后用ANSYS软件对其进行有限元分析,得到有限元运动学模型(Jacobian矩阵值),最后通过MATLAB7.1软件对该机构的三种运动学模型进行工作空间分析,并进行误差分析,得到输出平台适用的运动学方程。  相似文献   

11.
基于柔体动力学分析的平面并联机器人结构优化设计   总被引:1,自引:0,他引:1  
针对高速高精度机器人的结构柔性问题,提出了一种基于柔体动力学分析的结构参数优化设计方法,并对一种含平行四边形结构的平面并联机器人进行了结构参数优化。采用离散梁模型来仿真机器人的柔性,轴套模型来仿真机器人关节的柔性,建立了参数化的柔体动力学模型。利用动力学仿真软件ADAMS对机器人的动态响应、驱动力矩和固有频率进行了计算,据此对机器人的结构参数进行了优化。最后通过固有频率测试和动态响应实验结果验证了优化设计的有效性和准确性。  相似文献   

12.
在对一种6自由度并联机器人受力特点分析的基础上,应用SOLIDWORKS建立了并联机器人的虚拟样机简化模型,通过数据转换技术将模型导入ADAMS。应用ADAMS软件对并联机器人进行了承载能力仿真,得到了各向负载与驱动力的关系曲线,确定了并联机器人的各向承载能力。仿真结果证明并联机器人各向承载能力取决于某个驱动元件的受力,该并联机器人承载能力在工作空间内比较一致。  相似文献   

13.
针对全液压重载锻造机器人载荷大、搬运速度快和定位精度高的特点提出了一种新型机构方案,该方案能够实现车身回转、夹钳伸缩、夹钳升降、夹钳回转和钳头夹紧五个自由度的运动,其运动主体为一种混联机构,由三组平行四边形连杆机构构成,采用三组液压缸并联驱动,可有效增大机器人工作空间,使负载分配合理,易于控制。建立了运动学和动力学模型,采用正弦曲线将机器人夹钳末端的位移规划为直线运动,在MATLAB中求解出机器人的工作空间,得到了直线运动下各组液压缸的位移和驱动力变化曲线,验证了该模型的正确性和机构的合理性,为重载锻造机器人机构设计提供了一种解决方案。  相似文献   

14.
平面2自由度驱动冗余并联机器人的输出速度分析   总被引:1,自引:0,他引:1  
张立杰  刘颖  黄真 《机械设计》2006,23(2):19-21
机器人的性能分析是机器人机构设计的前提和基础。以一种平面2自由度驱动冗余并联机器人为研究对象,根据该并联机器人机构的空间模型和运动学反解,探讨了该并联机器人机构的末端输出速度性能指标与杆件尺寸之间的关系,并绘制了相应的性能图谱,这些图谱是该并联机器人机构设计的重要参考依据。  相似文献   

15.
基于以单开链为单元的并联机器人机构组成原理,构造了一种能够实现空间三维移动和一维转动的3P-1R并联机构,并运用CAXA实体设计软件构建了该并联机构的三维参数化模型。通过嘲与ADAMS之间的数据交换,实现了ADAMS环境下该新型3P-1R并联机构虚拟样机的运动学仿真。结果表明,新型3P-1R并联机构虚拟样机构建合理,运动仿真具有可信度。  相似文献   

16.
实现滚法中医推拿并串混联机器人的研究   总被引:2,自引:0,他引:2  
从分析中医推拿主流手法滚法与按揉法的自由度着手,提出一种4SPS-1RCRR型的5自由度并联机器人机构。针对滚法手法滚动频率较高的特点,增加了滚法推拿头机构,进一步提出一种改进型并联与串联机构混联的推拿机器人。在滚法手法中三维移动由并联机构完成,一维转动由推拿头完成。分析了该类机构的拓扑结构、并联机构的运动学反解,并对滚法推拿头进行运动学设计与分析。通过对改进前后模型运用ADMAS软拌进行仿真分析比较,表明该新机型既能避免P副的高频往复运动,又能较好地满足中医推拿中滚法推拿的要求。  相似文献   

17.
提出了一种可以精确控制的夹持机械手新结构,并分析了机械手手爪部分的多杆机构各杆件参数与夹持工件半径的关系。在此基础上,着重借助虚拟样机技术软件adams建立了机械手手爪部分多杆机构的参数化模型,并利用adams中的DS(设计研究)、DOE(实验设计),对其进行了分析和优化设计。  相似文献   

18.
提出一种新型两平移一转动三自由度空间并联机器人机构,对此机构的运动输出特性进行分析,并对自由度进行计算,建立了并联机器人机构的位置正、反解方程.运用ADAMS软件仿真该机构的运动.该机构是一种较理想的能实现两平移一转动并联机构的选型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号