首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 390 毫秒
1.
应用希尔伯特黄变换方法(Hilbert-Huang transform,简称HHT)对车辆-轨道系统中高低不平顺与车辆垂向振动加速度关系进行分析。首先,利用经验模态分解法(empirical mode decomposition,简称EMD)对实测的高低不平顺与车辆垂向振动加速度信号进行分解,得到两者的本征模函数;然后,通过比较分析两者本征模函数的时域波形与Hilbert能量谱,说明高低不平顺本征模函数与车辆垂向振动加速度本征模函数之间的确定性的对应关系,可以利用车辆垂向振动加速度来识别轨道高低不平顺的不良区段;最后,对京广提速干线铁路轨检车实测样本进行回归分析,得到在波长为1.5~50m范围内直线和曲线段高低不平顺与车辆垂向振动加速度的定量关系。  相似文献   

2.
肖乾  程玉琦  许旭 《机械传动》2021,45(4):135-141
为了分析高速列车齿轮传动系统在轨道不平顺激励影响下的振动特性变化规律,利用动力学软件SIMPACK建立包含齿轮传动系统的整车动力学模型,分别在大、小齿轮内部布置测点,进行无轨道不平顺和有轨道不平顺工况下的动力学仿真实验,获得高速列车时速250 km/h时大、小齿轮的振动加速度。对大、小齿轮横向、纵向和垂向振动加速度幅值进行频域分析,并对比分析了齿轮传动系统在有、无轨道不平顺工况的振动幅值、频谱分布。结果表明,由于轨道不平顺激励的影响,高速列车齿轮传动系统的横向、纵向和垂向振动加强,振动加速度均增幅明显,其中,垂向振动加速度变化幅值最大。齿轮传动系统的振动频率主要集中在0~400 Hz,小齿轮和大齿轮横向振动受轨道不平顺的影响规律一致,但小齿轮受到纵向振动的影响略小于大齿轮,小齿轮受到垂向振动的影响略大于大齿轮。  相似文献   

3.
轨道不平顺是影响列车快速、安全运行的重要原因,同时轨道不平顺所引起的列车轴箱加速度变化能够反映轨道不平顺的状态信息。通过希尔伯特-黄变换(Hilbert-Huang transform,HHT)对采集到的列车轴箱垂向加速度进行分析,利用HHT能够准确地描述非线性、非平稳信号的时变特征,分析轨道不平顺引起轴箱加速度变化的主要特征频率分布。对轴箱垂向加速度信号EMD分解后时频分析,能够有效地对轨道存在的不平顺位置进行定位,实现轨道区段内一定程度的短波不平顺检测。  相似文献   

4.
轨道短波不平顺是引起轨道-车辆系统高频振动的主要根源,造成轮轨之间剧烈的相互作用力。利用ABAQUS计算软件显式模块建立的轮轨接触有限元模型,用于求解车辆高速运行时轨道短波不平顺作用条件下的高频轮轨接触力。该模型采用轮轨的真实形状建模,并且可引入任意形状的轨道短波不平顺及轨道状态参数。以某高铁线路上实测轨道短波不平顺作为输入,接触模型仿真输出的轮轨垂向力与高速综合检测列车在对应区段上实测轮轨垂向力数据之间的相关系数为0.82,验证了所建模型的正确性。利用高频轮轨模型计算不同速度条件下不同参数的余弦型轨道短波不平顺引起的动态轮轨垂向力,对比分析计算结果表明:动态轮轨垂向力不仅与轨道短波不平顺的幅值有关,还车辆与轨道短波不平顺波长敏感程度有关,在车辆运行速度不低于200 km/h的条件下,车辆对轨道短波不平顺的敏感波长分布在100~200 mm。  相似文献   

5.
针对青藏铁路冻土带路基下沉问题,为了实现高原机车转向架低动力作用,基于车辆多体系统动力学理论,建立了两种不同悬挂方案的高原机车动力学模型,研究了不同一、二系悬挂刚度比μ对车体、构架以及轮轨垂向振动的影响。发现一、二系悬挂刚度比在0.5~3范围内变化时,轮轨垂向力和构架垂向振动加速度增大了11.24%和12.2%,车体平稳性指标和垂向加速度分别减小了11.3%和15%,并分析了高原线路上两种悬挂方案机车动力学特性。计算结果表明,选择刚度较大的二系悬挂,虽然一定程度上恶化车体平稳性指标,但较小的一系刚度在中低速范围内,能够降低由轨道不平顺引起轮轨垂向冲击,显著抑制了对轨下部分损伤较大的低频振动,减小运行过程中机车对轨下部分的损害。  相似文献   

6.
文章以十自由度车轨耦合模型为例,探究由轨道不平顺所导致车-轨耦合垂向振动的问题,由功率谱密度计算确定了轨道不平顺并以此作为激励源,计算分析车辆与轨道之间的垂向耦合振动响应。通过MATLAB仿真结果图分析得出,轨下的高底不平顺主要影响的是构架和轮对的振动频率,对车体的影响并不大,因此要减轻车-轨系统的振动主要从一系悬挂和轮轨的接触两个方面考虑。  相似文献   

7.
彭浪  梁树林  池茂儒 《机械》2023,(5):58-64
轨道不平顺是引起车辆和轨道振动的主要原因,也是影响列车平稳性和舒适性的关键因素。本文根据卡尔曼滤波(KF)最优估计原理,建立了车辆系统模型,通过观测车辆系统中车体、前后构架的多个惯性量,采用BP神经网络优化卡尔曼滤波(BP-KF),实现了轨道垂向不平顺的估计。结果表明,优化后的轨道垂向不平顺估计值,无论是在趋势上还是幅值上与原始值都具有较高的一致性,为轨道不平顺的间接估计提供了新的技术手段。  相似文献   

8.
为改善轨道非平稳随机不平顺对列车动力学性能的影响,基于高速列车线路运行的重复性以及周期性,采用变步长迭代寻优控制算法,建立高速列车抗蛇行减振器半主动变阻尼控制系统,以转向架横向加速度峰值为目标函数,不断迭代寻找最有利于列车动力学性能的减振器阻尼值,改善了传统列车定阻尼值的弊端。多体动力学软件和控制系统仿真软件相结合联合仿真,仿真分析表明,轨道非平稳随机不平顺会使得车体和构架横向加速度、轮对横向力以及轮轨磨耗以倍数增加,严重影响列车动力学性能;通过变阻尼控制之后,构架横向加速度、轮对横向力以及轮对磨耗明显减小,车体横向加速度也略有减小,能够改善列车动力学性能,提高列车运行安全性与平稳性。  相似文献   

9.
根据1/4车体4自由度垂向振动模型,利用随机振动理论及留数定理,建立轨道高低不平顺激励下的车辆垂向振动响应均方根值解析表达式;通过数值计算对解析表达式的正确性进行了验证,结果表明在一定有效数字范围内解析计算值与数值计算值完全吻合,表明所建立的解析表达式是正确的;通过整车仿真对比对解析计算方法的可靠性进行了验证,可知车体垂向振动加速度均方根值和二系悬挂垂向行程均方根值的解析计算值与整车仿真验证值的最大相对偏差分别仅为12.50%和15.47%,表明所建立的解析计算方法是可靠的。在此基础上,利用黄金分割原理,建立了二系垂向悬挂系统阻尼比优化设计方法,并通过实例对其可行性进行了分析,为高速列车二系垂向悬挂系统参数的初始设计提供了参考。  相似文献   

10.
为了分析高速磁浮列车直线行驶过程中各项因素的影响,基于多体动力学软件Simpack建立了高速磁浮列车的垂向动力学模型,施加轨道谐波高低不平顺激励,研究了行驶速度、轨道不平顺波长和幅值、车重和悬浮架重以及一二系悬挂参数对于平稳性的影响.对全高速域的仿真结果表明:该型高速磁浮列车满载通过直线线路时,不同车速对应于不同的敏感波长范围.随着列车速度的增加,引起车体主频响应的波长增长,敏感波长范围扩大.并且随高低不平顺幅值的增大,垂向Sperling指标非线性上升,且上升速率逐渐减小.另外,车体重量的增加,悬浮架重的减小,会改善平稳性.在高速磁浮列车的工程应用参数范围内,适当减小一系悬挂刚度、二系悬挂刚度和阻尼,增大一系悬挂阻尼,有助于改善平稳性.其中二系悬挂对车辆平稳性的贡献最大.  相似文献   

11.
针对山地地铁小半径曲线轨道钢轨波磨频发问题,根据现场调研建立车辆-轨道系统的动力学模型,探究车辆通过小半径曲线时轮轨间的接触特性。根据动力学分析结果建立半车车体-转向架-轨道系统的有限元模型,采用复特征值分析法研究半车车体-转向架-轨道系统摩擦自激振动特性,并研究车辆悬挂参数和轨道扣件参数对整体系统摩擦自激振动的影响规律。采用神经网络结合遗传算法对影响整体系统摩擦自激振动的关键参数进行多参数拟合,并求得车辆/轨道结构关键参数的优化解。结果表明:小半径曲线路段轮轨间的饱和蠕滑力导致半车车体-转向架-轨道系统的摩擦自激振动,从而引起钢轨波磨;车辆结构参数中一系悬挂横向刚度以及轨道结构参数中扣件垂向刚度、扣件横向刚度、扣件垂向阻尼对整个系统的摩擦自激振动具有明显影响。设置一系悬挂横向刚度为5.34 MN/m,扣件垂向刚度为25.45 MN/m,扣件横向刚度为6.9 MN/m,扣件垂向阻尼为6.06 kN·s/m时,能够有效抑制山地地铁小半径曲线轨道上钢轨波磨的产生。  相似文献   

12.
以上海地铁9号线某曲线段隧道为背景,通过在隧道内部、周围土层和地表布置加速度度传感器,对地铁运行引起的轨道-隧道-地层整个空间内的振动进行了现场测试。通过统计各测点的加速度平均峰值、加速度振级以及振动主频,分析了地铁振动在整个空间内的传播规律。实测结果表明:隧道内部及近处地层以垂向振动为主,但曲线段的地表水平振动可大于竖向振动;地铁振动从钢轨传至隧道壁时会有大幅衰减,从隧道壁传递到地表正上方时,振级反而有所增大;地铁振动在传播过程中振动主频范围也在不断减少。整体振动测试有助于全面认识地铁振动传播规律,对地铁线路设计、轨道结构减振具有较好的指导意义。  相似文献   

13.
针对车桥耦合振动影响自动化码头集装箱小车-低架桥结构安全和使用效率的问题,基于双协调自由界面模态综合法求解了车桥系统在轨道不平顺和轮对蛇形运动自激激励下的耦合振动时域响应,轨道不平顺时程通过Shinozuka一元多维平稳随机过程模拟法从轨道谱生成。用量纲分析法推导了结构动力模型相似条件,设计了试验模型,结合模型试验分析了铅芯橡胶支座、小车速度对车桥耦合振动响应的影响。模型试验与原型仿真结果相互验证表明:模态综合求解车桥耦合振动响应的仿真方法合理;使用铅芯橡胶支座可有效减小车桥加速度响应和支柱反力;车桥加速度响应随着小车速度的增大而增大,系统横向共振临界车速低于竖向车速,临界车速可由简支梁在移动集中力作用下车桥共振条件来估算。  相似文献   

14.
The first vertical compact torus (CT) injection experiment has been performed in the Saskatchewan Torus Modified (STOR-M) tokamak [Nucl. Fusion 46, 104 (2006)]. To increase the kinetic energy density of the injected CTs for deeper penetration, the University of Saskatchewan Compact Torus Injector (USCTI) was further modified by attaching a 90 degrees curved inner electrode coaxial with the outer electrode. The modification extended the original CT acceleration section from 60 to 114 cm. Effects of the curved acceleration electrodes on the velocity and magnetic field of the CT are reported in this paper. It has been found that the CTs, injected horizontally, were deflected to vertical direction and CT velocity measured at the curved acceleration section increased to 180 kms, representing a 40% increase compared with the case without the curved inner electrode in a previous experiment. At a higher acceleration bank voltage of 16 kV, this velocity increased to about 270 kms. In addition, amplification of the CT magnetic field in the curved acceleration section has also been observed.  相似文献   

15.
辛欣  任尊松  李响 《机械工程学报》2020,56(20):146-154
高速列车的快速发展使板式无砟轨道得以广泛应用。利用有限元分析软件ANSYS和多体动力学软件SIMPACK,建立车辆-弹性轨道耦合动力学模型,分析车辆运行的安全性和平稳性,研究轨道系统的位移、加速度、加速度功率谱密度、载荷特性,以及不同速度对轨道系统的振动影响,并对系统振动的主要影响因素进行初步探究。结果表明,轨道结构的垂向振动位移、加速度及载荷在由上至下传递过程中呈递减趋势,且钢轨到轨道板的衰减幅度大于轨道板到底座;轨道系统的振动能量主要集中在0~150 Hz范围内,大于300 Hz的钢轨振动能量经扣件衰减后基本未被向下传递,且速度升高,功率谱密度峰值出现的位置向右移动;速度为300 km/h时,钢轨垂向加速度功率谱密度小于100 Hz的峰值频率主要与钢轨固有模态有关,大于100 Hz的峰值频率呈倍频关系,且与轨道系统固有属性相关。联合仿真提高了研究效率,揭示了车辆-轨道系统的垂向振动特性及传递规律,为工程应用提供了参考依据。  相似文献   

16.
为了从源头抑制轨道交通产生的振动噪声,采用力锤激励法实测了扣件 钢轨耦联系统的加速度阻抗,从加速度阻抗曲线上得到了钢轨的振动模态及相应固有频率处的加速度阻抗幅值,通过不平顺波长与激振频率关系推出了不同行车速度下最不利不平顺波长。对钢轨进行了频率响应分析、脉冲响应分析和脉冲响应函数的时频分析,分离出了钢轨振动优势频率,其值与从加速度阻抗曲线识别得到的结果一致,同时还得到了优势频率的振动持续时间。试验说明,优势频率是钢轨振动与辐射噪声的主要频率,只要能控制优势频率的振动,就可以抑制钢轨的全频域振动与噪声  相似文献   

17.
The effect of a scratch formed on the running surface of a curved rail, due to the slide of a locomotive wheel, on the formation and evolution of rail corrugation is investigated in detail with numerical methods when a wheelset is steadily and repeatedly curving. In the calculation we consider a combination of Kalker’s rolling contact theory with non-Hertzian to be modified, a linear frictional work model and a vertical dynamics model of railway vehicle coupled with a curved track. Also the influence of different speeds of wheelset curving through the scratch on the development of the corrugation is taken into account. The numerical results indicate that a scratch causes strong contact vibration between the wheel and rail, and initiation and development of rail corrugation under the condition of steady creepage occurring between the wheel and curved rail. The wave-length of the corrugation depends on the speed of wheelset curving and the natural frequencies of the track.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号