首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
微细电火花加工设备技术研究   总被引:2,自引:0,他引:2  
微细电火花加工的关键设备技术涉及电极的微进给伺服机构、电极和工件的附加树对运动机构、微小能量放电电源以及加工状态检测与控制系统等。文章围绕微细电火花加工系统的设计系统,介绍基于压电致动原理以及摩擦传动的微进给机构、工具电极的线放电磨削机构和旋转主轴、以及微小能量放电电源的设计等,并指出需要进一步研究的课题。  相似文献   

2.
正电火花喷孔钻床的研制成功,解决了我国0.2 mm以下高精度微细孔不能加工的难题,打破了国外对这一技术的长期垄断。在电火花微小孔的加工中解决的难题有:电极宏微伺服控制系统、微细电火花间隙放电状态监测技术、微细电极自动进丝及高精度旋转机构、去离子水自动循环制取装置和微小孔加工工艺数据库的建立。以鲁南机床厂的电火花喷孔钻床为例,抽查其加工的任意50件工件,分别用塞规、三坐标测量仪、  相似文献   

3.
微细电火花作为一种高柔性、低成本的微细加工技术,在MEMS加工应用中表现出了较优异的加工性能。但微细电火花技术加工微小孔或微小的复杂形状时,由于孔径较小,电极的制备比较困难,本文利用块电极反拷法在线制作和修正工具电极,取得了较好的效果。  相似文献   

4.
微细电火花加工技术的研究进展   总被引:14,自引:0,他引:14  
研究和综述了微细电火花加工技术的研究现状和发展趋势。比较分析了常用微细加工与微细电火花加工方法的特点及应用,论述了线电极电火花磨削技术的原理及在微细加工中的作用。结合电火花加工过程中无宏观作用力的特点,论述了微细电火花加工装置微小型化的可行性和几种主要形式。  相似文献   

5.
分别介绍了使用LIGA技术、微细电火花线切割技术(μ-WEDM)、微磨技术、组合式加工技术加工微阵列的最新方法.使用移动LIGA技术加工微针阵列、微细电火花技术加工复杂的三维微阵列电极、微磨技术加工微锥塔阵列、和UV-LIGA技术与微细电火花技术组合加工微阵列电极的工艺方法.主要论述各种方法加工高深宽比阵列结构的原理及其优缺点以及加工中的效率、成本等问题.  相似文献   

6.
微细电火花加工机床关键技术   总被引:1,自引:0,他引:1  
研制开发两台高精度、高性能,具有自主知识产权的微细电火花加工机床,并对微细电火花加工机床的几个特有关键技术进行了深入研究.基于压电陶瓷的宏微伺服进给系统能实现分辨率为3.42 nm的微进给,并且能实现振动式进给,以改善微细电火花加工的间隙状态,提高微细电火花的加工效率和加工质量.结合块电极反拷与线电极反拷的微细工具电极反拷系统,可高效高精度地现场制作微细电极,电极直径最小可达4 μm.基于多传感器信息融合技术的放电间隙状态监测技术,能很好地解决微细电火花加工间隙状态的监测与识别问题.RC脉冲电源不存在维持电压现象,这一最新发现为降低单脉冲放电能量难题提供一个新的解决途径,使得基于RC方法开发的超微能脉冲电源的单脉冲放电能量最小降至皮焦级,为微细电火花加工奠定了良好的基础.最后的微细电火花加工试验表明,所开发的微细电火花加工机床性能稳定,且加工质量良好,尤其适合加工孔径为50~200 μm的微细孔.  相似文献   

7.
微细孔的电火花加工在工艺上有许多特殊要求,但主要的是能保持微小的进给速度,一般须在0.5微米/秒以下,且电极的端面间隙多在1微米以内。为此,设计制造了专用的微细孔电火花加工机床,用于实现微细孔的电火花加工和线反拷法制造微细工具电极。  相似文献   

8.
微细电火花加工系统及其工艺技术   总被引:2,自引:0,他引:2       下载免费PDF全文
开发了一套微细电火花加工系统,该系统不仅能加工微细轴、微细孔,还能实现微三维结构的微细电火花加工。研究了针对该系统的微细电火花加工工艺技术,研究了放电电压、放电电容等工艺参数,主轴转速,以及工作液介质对微细电火花加工效率、相对电极损耗率的影响规律。采用旋转削边电极技术大大提高了进行大深径比微细孔加工时的加工效率。进行了大量的加工实验,加工出了最小直径为6μm的微细轴以及最小直径为10μm的微细孔;通过对电极损耗的在线补偿策略研究,实现了微三维结构的加工,加工出了外径为4mm、具有24个叶片的微型涡轮盘及具有微三维结构的微细梁,充分证实了该系统的广泛适用性。  相似文献   

9.
高频窄脉冲电流微细电解加工   总被引:4,自引:2,他引:4  
微细电解加工是微细加工领域很有发展前景的微细加工技术之一。适合于微细电解加工的装置被研制出来, 它包括机床进给机构、线电极电火花磨削在线制作微细电极装置、短路检测模块、脉冲电源及其他一些辅助装置, 其中,高频窄脉冲电源是微细电解加工最重要的核心技术之一。根据微细电解加工的特点,设计了微细电解加工 MOSFET脉冲电源,该微能脉冲电源能很好地满足微细电解加工的要求。运用该微细电解加工装置进行加工试验, 在低的加工电压和低的钝化电解液浓度条件下,利用高速旋转的微细电极加工微小孔和像小铣刀一样进行微细电解铣削加工微结构,得到了满意的工艺效果,因而进一步说明电解加工在微细加工领域很有发展潜力。  相似文献   

10.
基于光刻技术微小型电极的制作   总被引:1,自引:0,他引:1  
针对微细电火花加工中面临的微小型复杂电极制作难的问题,提出了一种基于光刻技术微小型电极的制作方法.其宽度为0.15mm.间隙0.20mm,厚度为6~10μm,适合于加小型复杂的零件。文中在电火花成型电极制作方面作出了积极的探索。  相似文献   

11.
In recent years, the need for products containing micro-features has shown a pronounced and steady growth in several fields of application. For the development of micro-holed devices, one of the most important technologies is micro-EDM (Electro Discharge Machining). Micro-EDM can be considered as an ideal process to obtain burr-free micron-size features with high aspect ratios. In particular, micro-EDM is a non-contact material removal process in which rapid electric spark discharges remove the material composing the workpiece by means of melting and vaporizing phenomena. The present work deals with the fabrication of micro holes using micro-EDM technology. The investigation focuses on the influence of different electrodes and workpiece materials on the process performance, expressed in terms of tool wear ratio. In particular, the influence of four different workpiece materials (stainless steel, titanium, magnesium and brass), three electrode materials (copper, brass and tungsten carbide) and two different electrode shapes (cylindrical and tubular) was investigated. Moreover, an analysis of the geometrical characteristics of the micro holes in terms of conicity and diametrical overcut was carried out. An influence of electrode geometries, electrode material and workpiece material on the final output was found.  相似文献   

12.
In this study, the effect of vibrations on the electrical discharges in the micro-EDM (electrical discharge machining) process was investigated. The electrical discharge machining of micro bores was chosen to represent a typical application. Using sophisticated measuring equipment to record and analyse current and voltage waveforms as well as electrode feeding during the process, deeper insight into the discharge mechanisms was achieved. It was found, that the micro-EDM boring process can be subdivided into three major parts, the start-up process, the major boring process and the workpiece breakthrough of the tool electrode. Extensive investigations have shown a delayed start-up process on the workpiece surface for conventional micro-EDM; however, this effect can be reduced by inducing vibration on the workpiece. The cause of this reduction was analysed by single discharge analysis which also provides a means to investigate the effect of vibration frequency.  相似文献   

13.
Towards the effective tool wear control in micro-EDM milling   总被引:1,自引:1,他引:0  
The electrode wear in micro-electrical discharge milling (micro-EDM milling) is one of the main problems to be solved in order to improve machining accuracy. This paper presents an investigation on wear and material removal in micro-EDM milling for selected process parameter combinations typical of rough and finish machining of micro-features in steel. The experiments were performed on state-of-the-art micro-EDM equipment. Based on discharge counting and volume measurements, electrode wear per discharge and material removal per discharge were measured for several energy levels. The influence of the accuracy of volume measurements on the electrode wear per discharge and on the material removal per discharge are discussed, and the issues limiting the applicability of real time wear sensing in micro-EDM milling are presented.  相似文献   

14.
针对微细电火花加工技术特点,开展电极形状损耗形成机理的研究,设计了开放状态微细电火花加工实验方法,实现电蚀产物浓度的改变;通过实验对比不同加工状态下微细电火花加工电极形状损耗变化、工件表面微观形貌和重熔层情况,系统研究不同电蚀产物浓度作用下电极形状损耗的影响规律;分析微细电极形状损耗的影响机制,总结内凹坑形状变化与电蚀产物的内在关系。研究成果为实现微细电极的形状控制提供了一定的实验及理论依据,达到了提升微细电火花加工质量和加工稳定性的目标。  相似文献   

15.
Micro-gas turbine engine(MTE) rotor is an important indicator of its property, therefore, the manufacturing technology of the microminiature rotor has become a hot area of research at home and abroad. At present, the main manufacturing technologies of the MTE rotor are directed forming fabrication technologies. However, these technologies have a series of problems, such as complex processing technology high manufacturing cost, and low processing efficiency, and so on. This paper takes advantage of micro electric discharge machining(micro-EDM) in the field of microminiature molds manufacturing, organizes many processing technologies of micro-EDM reasonably to improve processing accuracy, presents an integrated micro-EDM technology and its process flow to fabricate MTE rotor die, and conducts a series of experiments to verify efficiency of this integrated micro-EDM. The experiments results show that the MTE rotor die has sharp outline and ensure the good consistency of MTE rotor blades. Meanwhile, the MTE rotor die is applied to micro extrusion equipment, and technologies of micro-EDM and micro forming machining are combined based on the idea of the molds manufacturing, so the MTE rotor with higher aspect ratio and better consistency of blades can be manufactured efficiently. This research presents an integrated micro-EDM technology and its process flow, which promotes the practical process of MTE effectively.  相似文献   

16.
Present study investigates the influence of major operating parameters on the performance of micro-EDM drilling of cemented carbide (WC-10wt%Co) and identifies the ideal values for improved performance. The operating parameters studied were electrode polarity, gap voltage, resistance, peak current, pulse duration, pulse interval, duty ratio, electrode rotational speed and EDM speed. The performance of micro-EDM drilling process was evaluated by machining time, material removal rate (MRR), relative electrode wear ratio (RWR), spark gap, surface finish and dimensional accuracy of micro-holes. It has been found that there are two major conflicting issues in the micro-EDM of carbide. If the primary objective is to obtain better surface finish, it can be obtained by the sacrifice of high machining time, low MRR and high RWR. However, for faster micro-EDM, the surface roughness is higher and electrode wear is again much higher. It is concluded that negative electrode polarity, gap voltage of 120 V, resistance of 33 Ω, peak current of 8 A, pulse duration of 21 μs, pulse interval of 30 μs, duty cycle of 0.47, electrode rotational speed of 700 rpm and EDM speed of 10 μm/s can be considered as ideal parameters to provide improved performances during the micro-EDM of WC-Co.  相似文献   

17.
3D micro-electrode used in micro electrical discharge machining (micro-EDM) is difficult to be fabricated. Based on laminated object manufacturing (LOM) process, this paper superimposed multilayer 2D micro-structures together to fit out 3D micro-electrode and applied it in micro-EDM to process 3D micro-cavity mold. Firstly, 100-μm-thick Cu foils were cut by wire-electrical discharge machining (WEDM) to obtain multilayer 2D micro-structures, and then these 2D micro-structures were connected together to fit out 3D micro-electrode through vacuum pressure thermal diffusion welding. Secondly, under the effect of 80-V voltage, 0.2-MHz pulse frequency, 800-ns pulse width, and 4200-ns pulse interval, the 3D micro-electrode was applied in micro-EDM and 3D micro-cavity mold with high surface quality was obtained. Thirdly, in order to reduce the adverse impact of electrode wear on machining precision of 3D micro-cavity mold, 3D queue micro-electrode was used to process the same 3D micro-cavity mold, in which the first electrode is for rough machining and the others for fine machining. Finally, based on the above studies, two kinds of 3D queue micro-electrodes were fabricated, and the 3D micro-cavity molds with surface roughness Ra?=?0.48 μm were obtained through micro-EDM. Compared with the scanning 3D micro-EDM process, the 3D micro-cavity mold can be obtained through up and down reciprocating method of the 3D queue micro-electrode, featuring simple machining process and high efficiency.  相似文献   

18.
A feasibility study of micro electro-discharge machining (micro-EDM) technology has been conducted for its possible contri-bution in the photomask industry. A series of experimental runs was performed on three specimens using a micro-EDM system with built-in wire electro-discharge grinding. Different thicknesses of chromium films were coated on borosilicate glass substrates. Unwanted chromium metal was machined through to the transparent glass substrate, leaving behind the desired pattern. In this study, lines were machined at different voltages, using electrodes of 20 _m in diameter, and no significant wear of electrodes was observed. The machined regions on the specimens were quantified in terms of linewidth deviation and light transmission. The experimental results showed that the linewidth deviations for all three specimens are below the 10% cut-off threshold. The best average light transmission obtained from this experiment was 75.8% at 90 V. The results gathered so far, suggests that the application of micro-EDM to produce a photomask is an acceptable process.  相似文献   

19.
Microelectro-discharge machining (micro-EDM) has become a widely accepted non-traditional material removal process for machining difficult-to-cut but conductive materials effectively and economically. The present study aims to investigate the feasibility of machining deep microholes in two difficult-to-cut materials: cemented carbide (WC-Co) and austenitic stainless steel (SUS 304) using the micro-EDM drilling. The effect of discharge energy and electro-thermal material properties on the performance of the two work materials during the micro-EDM drilling has also been investigated. The micro-EDM drilling performance of two materials has been assessed based on the quality and accuracy of the produced microholes, machining stability, material removal rate (MRR), and electrode wear ratio. The results show that deep-hole micro-EDM drilling is technically more feasible in WC-Co as it offers microholes with smooth and burr-free surfaces at the rim in addition to improved circularity and lower overcut than those provided by SUS 304. Moreover, WC-Co exhibits better machinability during the deep-hole micro-EDM drilling, providing relatively higher MRR and stable machining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号