首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
活塞式膨胀机在压缩空气储能领域具有广泛的应用,但是效率低,很大程度上限制了其发展。为改善活塞式膨胀机的工作性能,通过MATLAB建立活塞式膨胀机的仿真模型,通过实验方法验证仿真模型的准确性,以输出功率和效率作为性能指标对活塞式膨胀机进行研究,分析了进气压力、间隙容积、进气持续角对膨胀机输出特性的影响。结果表明:在恒定工况下,随着进气压力的增大,膨胀机的输出功率增大,但效率降低;在稳定的进气压力下,膨胀机存在最优间隙容积与进气持续角;活塞式膨胀机的效率随进气持续角的增大而降低,进气持续角越大膨胀机输出功率随转速的升高下降斜率增大;3 MPa的进气压力下,膨胀比为2.18时膨胀机的效率最佳,进气持续角为90°时膨胀机输出功率最优,在转速为570 r/min时输出功率达最大4.29 kW、效率达到19.6%。为可变膨胀比活塞式膨胀机的设计提供了理论依据。  相似文献   

2.
为了研究压缩空气小型发电系统的性能,首先搭建试验平台并对系统各部分建立数学模型,其次基于试验平台和MATLAB/Simulink软件对系统进行试验验证和仿真研究,验证了仿真模型的合理性。进而获得不同进气压力和转速工况下发电系统的输出功率和效率特性。结果表明:该系统的输出功率随着进气压力的增加而增加,当系统进气压力为0.7 MPa,膨胀机输出转速为3000 r/min时,随着输出电压的增大,系统的输出功率先增加后趋于稳定,最大输出功率可达5.98 kW;不同的输出功率对应的最佳发电效率不同,当输出功率为1 kW和5 kW时,系统的发电效率分别为63.2%和76.7%;当气罐容积为500 L,储气罐初始压力为6 MPa,进气压力为0.7 MPa时,系统至多可以满足5.98 kW的输出功率工作2209 s。  相似文献   

3.
以某涡轮式膨胀机为研究对象,开展影响其性能设计参数的研究。以输出功率、旋转扭矩为性能目标,采用正交设计方法,设计了16组方案,基于Fluent研究了转速等设计参数对涡轮式膨胀机输出性能、内部流场的影响,并借助SPSS(Statistical Product and Service Solutions)对仿真结果进行极差分析。结果表明:压力0.8 MPa、温度270 K、转速3000 r/min时,输出功率最大,约为8.76 kW;压力0.8 MPa、温度300 K、转速1500 r/min时,旋转扭矩最大,约为40.63 N·m。为使性能目标同时达到最优,基于多目标优化设计,在合理的范围内择优选取,选定压力0.8 MPa、转速2250 r/min、温度285 K为最佳方案组合,并通过涡轮式膨胀机测试平台完成实验验证。  相似文献   

4.
搭建了以R123为工质,设计输出功率为3kW的有机朗肯循环涡旋膨胀机试验系统,对涡旋膨胀机在不同工况下的性能进行了试验研究。试验得到涡旋膨胀机的最大输出功率为2.425kW,最高等熵效率为55%。变负载研究中涡旋膨胀机的转速变化范围为15502165r/min。试验工况范围内,涡旋膨胀机输出功率、总机械效率随负载的增加而增加,转速随负载数量的增加而降低。  相似文献   

5.
 针对双电机驱动式螺杆桩机动力头扭矩低,转速不均等问题,提出桩机动力头液压系统设计要求及控制策略,并在此基础上设计了基于恒功率泵的全液压桩机动力头回转机构液压系统。利用AMESim对该系统进行建模,并在斜坡负载、带负载启动和突变负载工况下对该系统性能仿真分析,得到3种工况下动力头回转系统压力仿真曲线、动力头负载扭矩与输出扭矩关系曲线和动力头转速曲线。仿真结果表明,所设计的液压系统输出压力稳定,且能随负载变化进行转速和扭矩调节,能够保证桩机在工作过程的稳定性。  相似文献   

6.
搭建了以压缩空气为工质的涡旋膨胀机性能测试平台,研究了涡旋膨胀机润滑油量和进出口工质参数对其输出性能的影响。结果表明:油气比在0.4%~10.0%范围内涡旋膨胀机输出功率和效率稳定不变;涡旋膨胀机输出功率随进出口压比的增大而增大,等熵效率受欠膨胀损失影响随进出口压比的增大而降低;涡旋膨胀机输出功率、等熵效率和容积效率均随转速的增大而增大,机械效率随转速的增大而降低,膨胀机运行效率在转速为2600r/min时达到最大值58.9%。  相似文献   

7.
针对单级膨胀器的效率低下等缺陷,提出两级膨胀器的结构形式,并对其进行热力学和动力学分析,建立了数学模型。根据两级系统模型进行计算机仿真,结果表明:两级膨胀器在进气高压的工况下,高压气体膨胀更加充分,并符合膨胀器高扭矩、低转速的性能要求。此外,还选取若干个控制参数,研究其对气动效率和气动功率的影响。在相同的设计时速下,不同的进气行程比和传动比相匹配,系统的气动效率基本相同,且低负载率有利于提高系统效率;第二缸尺寸对系统气动效率影响不大,但对功率具有较大影响,需要选择适宜的尺寸。  相似文献   

8.
膨胀机作为有机朗肯循环系统中的动力输出部件,其性能对系统起着至关重要的作用。传热损失作为膨胀机不可逆损失之一,是影响膨胀机运行效率的重要因素。本文对单螺杆膨胀机机壳及润滑油散热损失进行了冬夏两季试验研究,并进行了对比分析。试验结果表明,转速为3 000 r/min时,提高进气温度有助于减少传热损失的影响。虽然机壳及润滑油散热损失均有所提高,但各散热损失占比逐渐降低。夏季总散热损失占比由20.00%降低至9.52%,而冬季总散热损失占比由15.00%减小至8.79%。  相似文献   

9.
为了进一步优化GDI发动机的性能,通过发动机台架试验研究了不同转速对GDI发动机的影响。结果表明:在全负荷工况下,随转速增加,GDI发动机的缸内压力峰值和功率增加,最大压力升高率降低;GDI发动机的有效热效率随转速增加先上升后下降,在中等转速(1 500 r/min~4 000 r/min)达到最大扭矩。  相似文献   

10.
为了研究用于机械压汽海水淡化系统的双螺杆蒸汽膨胀压缩机热力性能,建立了压缩机和膨胀机热力模型。根据已知参数求解压缩机喷水量和轴功率,膨胀机进气温度和质量流量,将计算结果与热力压汽淡化系统进行比较。通过改变压缩机进、排气压力和膨胀机进气压力,对膨胀压缩机进行变工况性能分析。结果显示,压缩机进、排气压力会对压缩机喷水量和轴功率产生不同影响;膨胀机进气压力决定进气温度的高低,且存在最佳值。  相似文献   

11.
杨得亮  孟韩 《液压与气动》2021,(12):149-155
气动式反操纵负载模拟器,以压缩空气或氮气为能源,采用曲柄滑块原理,模拟舵面受到的反操纵气动力负载。首先,根据最大加载力矩和最大舵偏角确定曲柄、连杆长度;其次,确定活塞行程,并根据最大气体压力和最大加载力矩确定活塞有效面积及其他参数;最后,进行活塞速度校核,保证活塞始终处于主动加载状态。以某小功率舵机为例,根据反操纵力矩调节气源输出压力,采集舵偏角反馈信号和扭矩反馈信号,分析舵偏角与扭矩的对应关系。试验结果表明,气动式负载模拟器的试验数据和设计技术指标基本吻合,经数据修正或补偿后,线性度、加载精度等指标均达到设计要求。  相似文献   

12.
内燃式水动力系统的满负荷特性   总被引:1,自引:0,他引:1  
提出了一种直接利用内燃机活塞的直线往复运动实现水压力能输出的新工作模式。实现了内燃机和柱塞式水泵结构的一体化,研制了内燃式水动力系统试验样机。介绍了其工作原理和结构特点。采用计算机仿真的方法, 得到了满负荷条件下的主要工作性能。结果表明,在满负荷条件下,其有效功率、有效热效率及输出压力比内燃机一柱塞式水泵组合系统大约高13%-15%;燃油消耗率大约低15%左右。通过试验,给出了满负荷条件下燃油消耗率、输出压力、输出流量与曲轴工作转速之间的关系曲线,并与仿真结果进行了比较。给出了满负荷条件下, 内燃式水动力系统转速的最佳工作区间。  相似文献   

13.
随着能源和环境问题日益严重,基于气液转换器的气动汽车逐渐被关注。然而,以压缩空气为动力来源的气液转换器在工作时能量效率低下,直接影响了气动汽车的发展。设计了一种驱动气动汽车的气液转换器系统,建立数学模型,对气液转换器的工作过程进行仿真,分析了关键结构参数对该系统能效的影响。并搭建基于此气液转换器的汽车动力系统实验平台进行验证,得到优化系统能效的方法,结果表明:当输入压力在0.5~0.55 MPa之间变动时,或者活塞的有效面积比为4~6之间,系统的效率将会超过30%。活塞行程对效率的影响小,随着活塞行程的变化,效率保持在30%几乎不变;活塞行程对输出功率影响大,活塞行程增加时,输出功率下降;输入压力和活塞有效面积比增加时,输出功率也会增加。结果表明:为气液转换器的结构设计和性能优化提供了依据。  相似文献   

14.
现有的柱塞泵一般采用1个缸体同时集成多个柱塞,多个柱塞通过缸体耦合在一起,不能独立控制,多个柱塞只能按某特定规律运动,共同完成吸油和排油。在工作中,存在高效区域无法随负载动态调整和单液压泵不能同时输出多级压力匹配不同负载需求的缺点,为此提出一种矩阵式多单柱塞泵重组液压驱动系统。针对所提出新型液压驱动系统的前期探索研究,分析单柱塞泵流量压力输出特性,在详细阐述单柱塞泵结构特点的基础上,研究了单柱塞泵的工作原理。通过AMESim建立单柱塞泵的流量压力仿真模型,分析单柱塞泵的机电液的耦合特性和流量压力输出特性,讨论蓄能器和单柱塞泵的液压耦合特性,最后通过实验研究对单柱塞泵的特性进行验证。  相似文献   

15.
随着环境问题的日益严重,气动发动机作为一种清洁能源的动力装置而逐渐被人们所关注。然而,能量利用效率低和输出功率低已经严重影响了气动发动机的发展。分析了气动发动机工作过程中的能量损失,并在此基础上提出了一种多气阀的新型气动发动机机构。建立了气动发动机工作过程数学模型。为了验证模型的准确性,搭建实验平台对气动发动机进行实验研究。通过误差与进气压力和曲轴转速之间的关系对所建立的模型进行修正,得到精确的气动发动机工作过程的数学模型。在此模型的基础上得到多气阀气动发动机的扭矩和能量利用效率特性。结果显示,在同样的结构参数下,进气压力为2MPa时,相比单进气和排气的气动发动机机构,多气阀气动发动机气输出扭矩提高了26.2~41.9N·m,能量效率提高了8%~10%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号