首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
以动环、静环和液膜三者为研究对象,建立了低温液氧介质T型槽密封的三维实体模型。利用流体力学计算软件FLUENT对模型进行数值模拟,得到了密封端面液膜流场的压力场分布、剪切力分布和液膜动静环两侧温度场分布,分析了主轴转速、密封介质粘度和压差对开启力、泄漏量和液膜两侧温升的影响。结果表明:动环端面开槽可减少粘性摩擦热,液膜静环侧温升高于液膜动环侧温升,开启力和泄漏量与转速和压差的变化成正比,主轴转速的提高和密封介质粘度的增大都会提高端面温升,压差对温度变化的影响较小。  相似文献   

2.
基于热力单向耦合理论,对螺旋槽机械密封摩擦副界面的热流体进行Fluent数值模拟,得到密封环的温度场分布规律;将得到的温度场作为边界条件之一导入到密封环端面中进行耦合力变形分析,并研究密封环的转速以及介质压力对动静环最大变形影响。结果表明:动静环的最高温度都出现在液膜和环的接触处,且温度由密封端面开始向两端逐渐降低;密封环的变形量相对于液膜厚度较大,其中静环的变形梯度较动环大,其更容易失效;动静环端面最大变形量随转速和介质压力的升高而增大,在选择工况条件时可适当降低转速和介质压力来减少端面变形量。  相似文献   

3.
核主泵泄漏量的大小受密封间隙影响,密封间隙形状与密封压力分布、热变形紧密相关。基于流体力学和传热学的基本原理,建立核主泵机械密封流固热耦合变形分析模型;通过分析接触状态,确定动、静环的边界约束条件。利用ANSYS软件对机械密封副的端面流场、流固热耦合热变形进行模拟分析。仿真结果表明:密封环内径与转折半径间的压力近似呈线性分布,而转折处与液膜外径之间的压力呈抛物线分布;动、静环应力分呈环形分布,最大应力处于静环上端面外径处;最高温度都出现在密封环靠近内径处,且动环温度高于静环。  相似文献   

4.
史修江  王优强 《轴承》2013,(1):32-35
利用考虑热效应的Reynolds方程,对不同载液磁流体滑动轴承进行热弹流润滑数值分析。探讨了载液和磁粉体积分数对磁流体滑动轴承弹流性能的影响。结果表明:酯基H01磁流体滑动轴承的压力峰最小,膜厚和弹流温度最大;烃基E03磁流体滑动轴承的压力峰最大,膜厚和弹流温度最小;水基A01磁流体滑动轴承的压力峰、膜厚和弹流温度均在前两者之间;随着磁粉体积分数增大,水基磁流体的弹流润滑膜膜厚不断增大,压力无明显变化,弹流温度不断升高。  相似文献   

5.
张鹏高  魏龙  冯秀  冯飞 《润滑与密封》2024,49(4):1685-174
为研究磁流体润滑非接触式机械密封的磁场特性,运用Ansoft Maxwell数值模拟磁流体膜和密封环组成的密封系统的磁场强度和磁感应强度,分析磁流体膜厚和电流强度对磁场强度和磁感应强度的影响,用最小二乘法拟合磁流体膜的磁感应强度和电流强度的关系式。结果表明:磁感线在密封系统中形成了完整的“O”形回路,磁流体膜中的磁场强度最大,磁感线在磁流体膜中分布均匀,且垂直穿过磁流体膜;当电流强度恒定时,磁流体膜中的磁感应强度和磁场强度沿厚度方向可视为常数;随着电流强度的增加,磁流体膜的磁感应强度和磁场强度均增加。  相似文献   

6.
基于建立的三维螺旋槽机械密封摩擦副界面的流、固有限元模型,数值模拟了动静环端面间的流体膜,得到液膜的压力分布规律,结果显示压力呈非线性分布;然后将得到的压力值作为边界条件之一导入到动环端面的静力学分析中,利用两者接触面间的自动迭代计算实现单向弱流固耦合分析,结果表明:最大变形发生在动环端面螺旋槽处,而最大应力发生在螺旋槽顶端;并进一步研究了动环的转速以及介质压力和粘度对最大变形和最大应力的影响规律,为密封性能的优化提供了有益的参考。  相似文献   

7.
在合理的假设条件下,考虑到液膜对动环的热量分配系数,基于液体润滑非接触机械密封稳态传热模型,利用ANSYS软件分别对动环变形前后温度场进行计算,得出动环端面温度分布规律,并分析主轴转速、变形角β、液膜厚度、密封环导热系数等参数对温度场的影响。分析结果表明:变形后温度要明显高于变形前温度;动环的高温区出现在内径处;主轴转速、材料的导热系数对动环端面温度有较大影响。  相似文献   

8.
液氧动压密封性能对液氧涡轮泵的工作效率及稳定性有很大的影响,为了研究不同工况下机械密封液膜的相变和密封性能,建立端面液膜汽化相变数值计算模型,分析液膜汽化的相变程度、相变区域分布和液膜汽化相变对泵开启力和泄漏量的影响。结果表明:工况参数对液膜的汽化相变有着一定程度的影响,随着动环转速、介质压力的增加,相变被抑制且最大相变体积分数发生在压力出口处且范围逐渐减小,最大相变压力逐渐增加,开启力和泄漏量不断增大;介质温度升高会促进相变的发生,最大相变体积分数发生在压力出口处且范围逐渐增加,最大相变压力不断减小,开启力和泄漏量不断减小。液膜的汽化相变会对密封性能产生直接的影响,合理选择密封工况,可有效利用和控制相变,提高密封性能。  相似文献   

9.
为了研究动压型机械密封液膜汽化特性和密封性能,建立了涉及水的饱和温度与压力的关系、黏温效应以及牛顿流体内摩擦效应的密封间隙液膜汽化计算模型,以螺旋槽机械密封为例分析了工况变化对液膜汽化特性及密封性能的影响规律。研究结果表明:介质温度升高时,存在平均气相体积分数突增的临界温度值,且随转速的增大临界温度值增大;介质压力和转速的增大对汽化有抑制作用,转速增大易使较高的汽化程度迅速降低且在某转速值处出现突变点,介质温度升高使得突变转速值增大;密封性能受工况变化的影响明显,特别是在汽化临界温度值、突变转速值处性能的变化速率迅速增大;液膜汽化首先发生在螺旋槽背风侧堰区,且随介质温度升高快速覆盖槽堰区并向坝区推进;随着转速的增大,润滑膜气相的周向分布更加均匀且高汽化区域会向外径侧移动。  相似文献   

10.
高温会降低磁流体饱和磁化强度,造成永磁铁退磁,影响磁流体密封装置的可靠性及稳定性。为探讨磁流体密封装置传热特性,以大轴径离心压缩机磁流体密封为研究对象,同时考虑磁流体摩擦热和轴承摩擦热对磁流体密封装置传热特性的影响,利用有限元数值计算与磁流体、轴承摩擦功耗理论分析相结合的方法,研究磁流体密封装置温度分布规律,分析齿宽、密封间隙和转速对永磁铁和磁流体最高稳态温度的影响,并确定相关工况所需冷却液质量流率。结果表明:由于轴径尺寸较大,表面线速度高,磁流体黏性摩擦热及轴承摩擦热对密封装置传热特性有显著影响,在无冷却工况下,密封装置最高温度超过磁流体和永磁铁的极限使用温度,需通过强制对流换热的方式进行降温处理;永磁铁及磁流体最高稳态温度随着齿宽增加而升高,随着密封间隙增加而减小;随着转速的增加,永磁铁及磁流体最高稳态温度升高,且转速越大,相同转速梯度差之间的温度差越大。  相似文献   

11.
以内圆弧槽流体动压型机械密封为研究对象,建立了动静环端面间液膜的三维模型,运用计算流体动力学理论和有限体积法对端面间液膜的流场特性和装置的密封性能进行了模拟和数值分析。对处于不同工况、不同密封介质条件下的液膜流场,得到了其压力、泄漏量、开启力和摩擦扭矩的变化规律及相互影响关系。结果表明:圆弧槽能够产生明显的动压效应,动压效应的大小与动环转速呈正比;液膜的压力沿径向由内径到外径逐次降低;泄露量的大小随动环转速或介质压力的增大而增大;开启力的大小与动环端面的总压力具有相似的变化规律。  相似文献   

12.
柱面螺旋槽干气密封被应用于高参数工况时,由于浮环容易发生变形,影响密封系统的运行和性能。根据柱面干气密封的结构特点,建立考虑流固耦合下的旋转环和浮环的模型;绘制柱面气膜计算域,利用独有block映射技术的ICEM软件对气膜模型进行跨尺度网格划分;采用Fluent对气膜流场进行模拟计算,提取浮环表面所受气膜承载力的变化函数;结合ANSYS Workbench将变化的气膜压力耦合到浮环固体表面上进行力变形求解,讨论介质压力、转速对变形的影响规律。结果表明:浮环的变形主要表现为沿径向的挤压变形,浮环外边缘处产生最大压缩位移,且最大变形量超过了密封时的平均气膜厚度,说明流场的变化对浮环的变形有一定的影响;浮环的最大变形量及应力值与介质压力、转速呈线性关系增加,其中介质压力起主引导作用。  相似文献   

13.
基于转子在临界转速下的涡动特性,分析转子涡动的轴心运动轨迹.由于动环圆心运动轨迹追随转子,故以动环圆心的圆形运动轨迹为研究点,建立动环偏心的液膜区域模型.采用有限差分法对广义雷诺方程进行离散,通过SOR迭代方法对离散方程进行求解,得到液膜密封端面压力分布,并探讨动环偏心距对液膜开启力、摩擦扭矩、泄漏量以及空化率等液膜密...  相似文献   

14.
为研究中高温液体动压型机械密封端面变形规律及液膜汽化特性,建立涉及汽液两相流和密封环变形的计算模型;以螺旋槽液体机械密封为例,研究不同介质温度下密封端面轴向变形特征,以及润滑膜压力、温度及汽化特性与端面变形的关系。研究表明:动环最大、最小轴向变形分别位于螺旋槽的迎风侧堰区内径侧附近、背风侧中部,槽堰区的轴向变形呈周向波浪式变化;密封端面变形导致坝区膜压、膜温升高且堰区液膜汽化程度明显提高;介质温度升高时,润滑膜温度明显升高、开启力下降,坝区保持低汽化程度,堰区汽化程度提升明显,且当介质温度达393 K后,汽化程度的增速明显加大,即存在汽化突增的介质温度值;转速增大,润滑膜整体汽化程度下降。  相似文献   

15.
机械密封环的传热特性分析   总被引:5,自引:0,他引:5  
研究机械密封端面摩擦热在动环、静环、端面间液膜和密封介质组成的传热系统中的传递规律。按换热面积守恒的原则将密封环简化为当量圆筒,提出动环和静环获得的摩擦热的计算方法,推导密封环的温度分布方程。结果表明,液膜摩擦热量随角频率的增加和平均膜厚的减小而增加。绝大部分摩擦热通过动环传递到介质,静环端面的温升较小。动环靠近介质侧的温度低于空气侧的温度,端面上的温度较高,且端面径向存在温度梯度。增大动环与介质的接触面积或选用热导率大的材料可降低动环上的最高温度和端面上内外径处的温差,提高机械密封的性能。  相似文献   

16.
磁性润滑脂密封在运转过程中的温升对其使用寿命影响较大.针对这一问题,设计一种多级磁性润滑脂密封实验装置,通过实验研究密封介质压力、磁性润滑脂注入量、密封间隙及转速对磁性润滑脂密封温升的影响,分析不同转速下密封的功率损耗.结果表明:磁性润滑脂的径向截面形状以及剪切速率是温升的主要影响因素;在保证密封承压能力的前提下,适当减少磁性润滑脂注入量,增大密封间隙,可以减少磁性润滑脂的发热量;磁性润滑脂密封的功率损耗随转速升高而增大,且比理论计算结果大,因此在密封系统设计时应予以充分考虑.  相似文献   

17.
构建一种适用于多唇往复滑环式组合密封的数值模型,数值模型中包含固体力学分析、流体力学分析、接触力学分析、流固耦合分析。以含有3段密封唇的PS封为例,基于数值模型求解得到密封面油膜厚度分布、油膜压力分布、粗糙峰接触压力分布,以及内外行程的流量和密封界面的摩擦力。该数值计算方法解决了多唇密封中边界条件难确定的问题,通过迭代计算可得到稳态运行时各密封唇的边界条件。明确多唇PS封的密封机制,分析不同往复速度对密封性能的影响。结果表明:多唇PS封内外行程中各唇边界条件差异较大,外行程中,两唇之间的空隙处存在一定压力,内行程中空隙压力为0;外行程的密封面接触压力要小于内行程;增大往复速度会使多唇PS封净泄漏增加,摩擦力减小。  相似文献   

18.
根据传动装置密封环的工作特点,确定密封环传热规律。以密封环、油膜和密封介质组成的传热系统为计算模型,以摩擦热为热源,研究密封环的传热特性,得到密封环导热计算的热边界条件及其计算方法,推导密封环温度分布的计算公式,通过解析建模与求解计算得到密封环的温度分布规律,研究诸因素对密封环传热性能的影响。结果表明,工作压力和转速的增加,密封环温度都呈线性增长,而内外径的温度增量却不相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号