首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
变风速运行控制下风电传动系统的动态特性   总被引:6,自引:1,他引:6  
基于齿轮系统动力学的方法对风电传动系统进行研究。运用基于自回归模型的线性滤波法(Auto-regressive,AR)建立的风速模型对实际风场的随机风速进行模拟;根据风力发电机在实际情况中的运行控制策略获得风力发电机齿轮传动系统的时变输入转矩激励;综合考虑风力发电机齿轮传动系统中各个齿轮副的时变啮合刚度、各个滚动轴承的刚度、各个轮齿综合啮合误差等内部激励,采用集中参数质量法建立风力发电机齿轮传动系统的耦合动力学模型;在此基础上建立风力发电机齿轮传动系统的动力学微分方程并进行仿真计算,分别求解风力发电机齿轮传动系统的固有频率、振动响应、动态啮合力和滚动轴承动态轴承力。研究结果为风力发电机传动系统的动态性能优化设计和可靠性设计奠定了基础。  相似文献   

2.
针对风力发电机齿轮传动系统在变风速工况下失效率高的问题,在模拟真实风速的基础上,建立了考虑外部随机风载及内部轮齿时变啮合刚度、轴承时变刚度、综合传递误差等激励因素的风力发电机齿轮传动系统齿轮-轴承耦合动力学模型,通过对动力学模型进行仿真计算,得到了各齿轮副的动态啮合力和各支承轴承的动态接触力,并求得齿轮的使用系数、齿轮和轴承的载荷系数。在此基础上,建立了基于动力学的风电齿轮传动系统可靠性评估模型,并求得了各零件及传动系统的可靠度,较全面地评价了随机风载作用下风力发电机齿轮传动系统的可靠性,为风力发电机齿轮传动系统可靠性设计和动态优化奠定了基础。  相似文献   

3.
《机械传动》2013,(9):10-14
针对风力发电机齿轮传动系统在变风速工况下失效率高的问题,在模拟真实风速的基础上,建立考虑外部随机风载及内部轮齿时变啮合刚度、轴承时变刚度及综合传递误差等激励因素的风力发电机齿轮传动系统齿轮)轴承耦合动力学模型,通过对动力学模型进行仿真计算,得到各齿轮副的动态啮合力和各支承轴承的动态接触力。在此基础上,利用有限单元法、赫兹接触理论和数理统计理论得到了传动系统各齿轮和各支承轴承的动态接触力的概率分布,基于应力)强度干涉理论建立风力发电机齿轮传动系统关键零部件的模糊可靠性模型,并计算了关键零部件及系统的模糊可靠度。  相似文献   

4.
针对随机风作用下风力发电机齿轮传动系统失效率高的问题,研究了随机风引起的风力发电机传动系统外部风载荷以及内部由齿轮、轴承刚度及综合啮合误差等引起的内部动载荷激励,基于集中质量法建立了风电齿轮传动系统齿轮-轴承耦合动力学模型。在对模型进行仿真求解的基础上,分别求得了传动系统中各齿轮和轴承的动态接触应力-时间历程。将载荷作用过程视为随机过程,推导出随机载荷作用下的等效载荷累计分布函数,从系统层面上建立了基于应力-强度干涉理论的风力发电机齿轮传动系统动态时变可靠性模型,模型考虑了零件的失效相关性和强度退化因素,研究了失效相关性和强度退化对风电齿轮传动系统可靠度和失效率的影响规律,为风力发电机齿轮传动系统动态设计和可靠性优化设计奠定了基础。  相似文献   

5.
考虑随机制造误差的风力机行星齿轮系统动力学特性   总被引:5,自引:0,他引:5  
为研究综合传递误差的随机波动对风力发电机齿轮传动系统动力学特性的影响,考虑齿轮时变啮合刚度、综合传递误差等因素,建立风力发电机行星齿轮传动系统纯扭转动力学模型。以随机风速引起的齿轮系统转矩波动作为行星齿轮系统的外部激励,对某1.5 MW风力发电机行星齿轮传动系统的动力学特性进行仿真分析,得到系统各响应量时域内的统计特征和齿轮副间的动态啮合力统计特征。分析表明:行星架、行星轮和太阳轮在扭转方向上的振动特性与外部载荷相关,其振动位移与外部载荷波动有相似变化的趋势;综合传递误差随机分量的离散程度对行星齿轮系统的动态特性和齿轮副间的动态啮合力有较大影响。随着综合传递误差随机分量离散程度的增加,行星架、太阳轮和行星轮在扭转方向上的振动幅值明显增加;综合传递误差随机分量的随机性使齿轮副间动态啮合力产生随机波动,随机分量离散程度越大,动态啮合力波动越明显;当随机分量的离散程度达到某一值时,齿轮啮合过程发生脱离,引发啮合冲击。  相似文献   

6.
针对风力发电机齿轮传动系统在随机风作用下失效率高的问题,在模拟真实风速的基础上,建立考虑外部随机风载及内部齿轮时变啮合刚度、轴承时变刚度及综合传递误差等激励因素的风力发电机齿轮传动系统齿轮-轴承耦合动力学模型,通过对动力学模型进行仿真计算,得到各齿轮副的动态啮合力和各支承轴承的动态接触力。结合有限单元法和赫兹接触理论,得到关键零部件的应力时间历程,采用雨流计数法对应力时间历程进行统计分析,得到传动系统各关键零部件承受载荷的应力谱及概率分布函数。研究结果为风力发电机齿轮传动系统的动态可靠性分析和疲劳寿命预测奠定基础。  相似文献   

7.
内外激励下高速列车齿轮箱箱体动态响应分析   总被引:7,自引:0,他引:7  
对高速列车齿轮箱箱体结构的动态响应特性进行分析。对齿轮传动系统内部和外部动态激励进行数值模拟,建立考虑轮齿啮合的高速列车动力车整车动力学模型,内部激励主要考虑齿轮的时变啮合刚度、轮齿啮合阻尼和传递误差,外部激励主要考虑异步电动机的谐波转矩和轨道激励,得到恒功率牵引工况下齿轮传动系统的动态载荷。建立齿轮箱箱体的有限元模型,利用直接积分法分析动态载荷作用下箱体的动态响应,并针对相关频率进行谐响应分析。结果表明,考虑轮齿啮合才能得到齿轮传动系统的高频振动,箱体结构能够满足正常的运营需求,异步电动机谐波转矩频率和齿轮啮合频率在箱体动态响应的主频中都有体现,在箱体结构设计时,应注意箱体自身模态频率与外界频率的错开,以免发生共振。  相似文献   

8.
为了更好地研究轮齿齿根裂纹对齿轮传动系统动态特性的影响,将风力发电机增速齿轮箱中一对啮合轮齿作为研究对象。运用改进能量法计算含有齿根裂纹齿轮的齿轮系统时变啮合刚度,考虑齿侧间隙、时变啮合刚度和传动误差影响,建立含有齿根裂纹故障的齿轮传动系统6自由度动力学模型。利用四阶Runge-Kutta法对建立的齿轮系统微分方程进行积分求解,得到齿轮系统动力学响应。通过幅频响应曲线、时域图及频域图,综合分析了含有不同深度裂纹故障的齿轮传动系统的动力学特性。最后,通过试验验证齿轮系统理论仿真的正确性,从而为风力发电机齿轮箱中的齿轮系统裂纹故障识别提供理论依据。  相似文献   

9.
随机风载作用下风力发电机齿轮传动系统动态可靠性分析   总被引:13,自引:1,他引:12  
运用最小二乘支持向量机(Sparse least squares support vector machines,SLS-SVM)机器学习方法建立风场随机风速模型,根据随机风速模型和空气动力学理论得到随机风引起的系统外部载荷激励,建立考虑齿轮时变啮合刚度和滚动轴承时变刚度的风力发电机行星齿轮传动系统齿轮—轴承耦合动力学模型,并对动力学模型进行仿真计算,分别得到各齿轮副的动态啮合力和滚动轴承动态接触力。以此为基础,将载荷作用过程视为随机过程,推导出随机载荷作用下的等效载荷累计分布函数。根据应力—强度干涉理论建立风力发电机齿轮传动系统各齿轮和轴承的动态可靠性模型,利用二阶矩和摄动方法求出各齿轮、轴承的动态可靠性指标,并计算出动态可靠度,研究各齿轮、轴承和传动系统的动态可靠度随时间的变化规律,为风力发电机齿轮传动系统动态可靠性设计奠定了基础。  相似文献   

10.
风力发电齿轮箱系统耦合非线性动态特性的研究   总被引:4,自引:1,他引:3  
对大型风力发电机齿轮箱传动系统进行分析研究,以齿轮啮合原理、齿轮系统动力学和非线性动力学的理论为依据,在考虑齿轮系统时变刚度、齿侧间隙和制造误差的基础上,建立了具有多级齿轮传动的大型风电齿轮箱的齿轮—传动轴—箱体系统耦合非线性动力学模型。在考虑系统内部激励的情况下对整个耦合系统动态特性进行了研究,为齿轮系统动态性能优化提供了理论依据。  相似文献   

11.
根据2.5 MW风力发电机行星齿轮传动系统在随机风场中复杂变工况的工作特点,利用双参数威布尔分布模型描述随机风速的分布,获得由随机风速引起的时变风载。采用集中参数法建立风力发电机行星齿轮传动系统平移-扭转耦合动力学模型。综合考虑风力发电机行星齿轮传动系统的轴承支撑刚度、齿轮副时变啮合刚度等内部激励对传系统的影响,对变风载下2.5 MW行星齿轮传动系统的动力学特性进行仿真计算分析,求得在外部风载作用下各构件的位移响应与速度响应,为风力发电机行星齿轮传动系统的故障诊断和优化设计奠定了良好的理论基础。  相似文献   

12.
为研究风电传动系统在变速变载运行工况下的机电耦合动态特性,构建的包括齿轮系统动力学模型、永磁同步发电机有限元模型以及风机运行控制模型的风电传动系统机电耦合模型,计入了齿轮时变啮合刚度以及发电机齿槽效应、磁饱和等非线性因素。仿真分析了风电传动系统在启动、发电运行工况下的动态响应和机电耦合动态特性。研究结果表明:启动工况下,风电传动系统动态响应平稳;发电运行工况下,风电传动系统处于变速变载状态,易被激起低频振荡,动态响应复杂。在发电机齿槽效应、磁饱和等因素作用下,电流和电磁转矩产生由时间谐波和空间谐波引起的主谐波频率波动;经机电耦合作用,齿轮振动特性与发电机电磁特性相互影响,电流和电磁转矩中含有更多与齿轮啮合相关的机械振动频率成分,同时电磁转矩反作用于齿轮系统,激发齿轮系统产生丰富的结构频率。  相似文献   

13.
GTF发动机齿轮传动系统结构复杂,在高速运转时由于轮齿啮合对个数的变化产生了激振力,导致系统因内部动态激励发生振动;此外,系统还受到驱动轴、风扇轴及风扇负载等产生的外部动态激励,引起传动系统的振动加剧。应用SolidWorks软件对行星齿轮传动系统进行三维实体建模、虚拟装配。应用软件ADAMS对GTF齿轮传动系统进行动力学仿真分析,得到不同工况下系统转子部件的振动位移、振动加速度、振动加速度、齿轮啮合力等参数曲线。根据仿真结果对齿轮传动系统的动力特性进行了评估,分析了不同条件下传动系统的振动特点及振动原因,对GTF发动机行星齿轮传动系统的设计与应用提供了参考与理论依据。  相似文献   

14.
为了研究齿轮传动系统的动力学特性,采用TYCON软件建立了某变速箱的动力学模型,该模型考虑了时变啮合刚度、啮合阻尼、轮齿啮合综合误差、原动机和负载的动态输入、传动轴的扭转及弯曲刚度等因素。通过仿真,得到了多级齿轮传动系统的动态特性,包括稳态、转速波动等情况下的各轴及齿轮的转速、角加速度、转矩等参数的变化情况。并且对比分析了将原变速箱的第三轴加强和减弱两种工况。  相似文献   

15.
半直驱风力发电机凭借良好的综合性能,已得到较广泛的技术推广,前景广阔,其关键机械部件——传动系统的动力学问题依然突出。文中针对半直驱风力发电齿轮传动系统,在考虑时变外部激励、齿根裂纹、啮合误差等条件下,运用集中参数法建立了含故障的半直驱风电行星齿轮传动系统动力学模型,计算得到了齿轮传动系统的固有频率及振型。针对随机风场中,风速变化复杂的特点,采用线性滤波AR模型,模拟了脉动风速时程曲线,获得了半直驱风电行星齿轮传动系统的外部激励;利用改进能量法对含裂纹齿轮的啮合刚度进行了数值模拟,获得故障齿轮的时变啮合刚度;引入随机风载及故障动态参数激励,仿真分析了系统的动态响应,研究了时变载荷激励下含故障的行星齿轮系统的动力学特性,为风电齿轮传动系统的故障分析、诊断提供了理论依据。  相似文献   

16.
林希 《机械传动》2014,(10):126-130
考虑输入转矩和负载转矩的随机波动量,以及随机啮合误差,建立了单级直齿轮传动系统的弯-扭耦合动力学模型,经数值求解,得到了作用于轮齿的动应力。将工作周期内的动应力作用过程视为随机过程,并用该随机过程中最大应力的概率模型等效随机过程的作用,得到了应力的概率分布模型。使用Monte Carlo法得到了许用应力的概率分布模型。基于应力-强度干涉理论建立了考虑齿根弯曲疲劳失效和齿面接触疲劳失效相关性的齿轮传动系统动态可靠性模型。研究发现啮合误差越大,系统的可靠性越低。  相似文献   

17.
以风力发电机行星传动系统为研究对象,为揭示齿圈柔性对其动态性能的影响,将齿圈离散为多段刚性轮齿段,对每两轮齿段用理论长度为零的双向扭转弹簧连接。在行星架随动坐标系下,综合考虑了支撑刚度、齿轮啮合时变刚度和齿圈柔性,建立了风力发电机行星传动系统刚—柔耦合动力学模型。分析了各构件间的相对运动微位移及齿圈的受力情况,运用牛顿力学推出动力学方程;基于所建模型,得出了齿圈厚度的变化对其各节径固有频率的影响;发现了行星轮两种特殊啮合位置下齿圈的变形特点及所对应连接扭簧的扭转力矩和扭转变形角度间的关系。该结果可为风力发电机行星齿轮传动的设计提供理论依据。  相似文献   

18.
为了研究细高齿齿轮的振动特性,以一对标准齿齿轮和细高齿齿轮为对比研究对象,建立直齿轮传动系统平移-扭转动力学模型;采用有限元方法求解细高齿齿轮的时变啮合刚度,分析了负载对刚度的影响规律;通过Newmark-β时间积分法计算齿轮的振动响应,对比标准齿齿轮和细高齿齿轮传动系统的轴承动载荷及齿轮啮合激励,求解了不同转速下两对齿轮系统的输入、输出轴承动载荷。结果表明,细高齿齿轮啮合为两齿-三齿交替接触,刚度变化减弱;轴承动载荷波动幅值较标准齿大幅降低,啮合频率及其倍频幅值明显下降,轮齿间啮合力减小。  相似文献   

19.
利用计算机对齿轮传动系统进行动态仿真,建立了考虑轮齿啮合摩擦力的直齿圆柱齿轮转子-轴承系统的动力学模型,根据不同接触位置上扭转啮合刚度的值,通过采用Matlab数值计算方法求解系统的时变非线性微分方程,模拟在扭转激励下,有剥落缺陷系统的动态响应,通过比较得到其与无缺陷系统响应的不同.仿真计算结果表明,该模拟方法能对齿轮传动系统的动力学性能做出较为全面的预测,为齿轮故障诊断提供参考.  相似文献   

20.
重合度是反映齿轮副同时参与啮合轮齿对数多少的重要参数。合理选择适当的重合度可以改善传动承载能力并保证传动平稳性,从而提高齿轮传动系统的性能和可靠性。而分析不同重合度下系统参数对系统振动特性的影响,对优化传动系统性能、提高工作效率和降低故障风险具有重要意义。本文将轮齿啮合性能和动态特性相结合,首先,确定人字齿轮系统刚度激励和啮合冲击激励,采用集中参数法建立复杂激励源下的人字齿轮副弯-扭-轴耦合非线性动力学模型;然后,对非线性动力学方程进行消除刚体位移和无量纲化处理;最后,研究了不同重合度下系统参数对系统动态特性的影响。研究表明,当重合度由2.72变为3.08时,齿轮副综合相对振动加速度均方根值均降低达40%左右。可见,增大齿轮副重合度能提高系统的稳定性。此外,随着系统参数变化,增大齿轮重合度能消除系统存在的跳跃现象,并降低跳跃和共振峰的幅值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号