首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微气泡因具有比表面积小和稳定性好等特点被广泛应用于污水处理和矿物浮选等领域。为了高效获得稳定的微气泡,利用COMSOL软件研究了聚焦型微通道中气、液相流速、表面张力、液相黏度和壁面润湿性对气泡生成的影响。结果表明:当气相流速增加时,气相克服表面张力的能力增强,气泡的脱离尺寸和频率增大,脱离时间减小;液相流速增加时作用在微气泡上的惯性力和剪切力增大,气泡脱离时间和脱离尺寸均减小;表面张力增大时气泡脱离时间和脱离尺寸增大,脱离频率减小;液相黏度增大时,作用于气泡的黏性力随之增大,气泡的脱离时间和脱离直径均随之减小,脱离频率增大;接触角从40°增大到180°,气泡的脱离尺寸和脱离时间整体先增大后减小,脱离频率先减小后增大。  相似文献   

2.
液滴撞击壁面气泡的产生及运动研究   总被引:1,自引:0,他引:1  
液滴撞击壁面时,液滴与壁面间产生的气泡及其变化对液滴在壁面上的后续运动具有重要的影响。利用相界面追踪的复合Level Set-VOF方法和壁面润湿模型,通过气液两相流动与固壁相互作用的耦合求解,对液滴撞击壁面时气泡的产生及运动进行了研究。研究结果表明,撞击速度较大时,液滴与壁面间气体的压力远大于液滴内压力以及接触线附近区域液体和气体具有不同的速度分布特性是撞击壁面时液滴内产生气泡及气泡运动变化的主要原因;液滴与壁面间形成的气体层宽度将经历先增大后减小,并最终在液滴中心形成一个气泡的变化历程。液滴撞击速度小于一定值时,气泡最终半径与撞击速度呈近似线性关系,撞击速度对气泡最终半径影响较大;撞击速度超过一定值后,气体层最大宽度与撞击速度呈近似线性关系,但气泡最终半径基本不再受撞击速度的影响。  相似文献   

3.
基于尺度分离理论,近壁微液膜波动特性对临界热负荷的产生有至关重要的影响。针对水平管内分层流动近壁微液膜在气流剪切应力作用下的波动特性进行研究,分析声学法,射线法,电学法和光学法等不同检测方法在近壁薄液膜厚度测量上的应用,并比较各种方法的优缺点。最终采用光学法,即利用光谱共焦位移传感器,对不同气、液流速条件下近壁微液膜进行测量,分析剪切夹带对液膜厚度变化的影响规律,获得液膜撕裂的临界条件。研究结果表明:微液膜平均厚度在气流剪切夹带影响下随气速的增大而减小。由于液滴夹带现象影响程度的不同,在不同气、液流速条件下,试验段出口处液膜平均厚度液膜呈现线性或非线性的变化趋势。气流剪切应力增大时,液膜厚度超过临界厚度即发生撕裂现象,液膜撕裂存在随机性,当壁面条件一定时,临界液膜厚度不随气、液流速的变化而变化,但在高气、液流速条件下液膜波动加剧。  相似文献   

4.
磨粒流加工的固液两相流模型及压力特性模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
以FLUENT软件为计算平台,采用Spalart-Allmaras固液两相Mixture湍流模型对磨粒流加工过程中磨粒流的流动形态进行了数值模拟,结果表明:增大压力差可提高通道中流体的平均速度,增大边界层与壁面流速差可提高加工效率;通过改变进口压力得到非稳态流场,能够使近壁面处的磨粒数目增多,有利于加工效率的提高。同时,模拟结果还反映了黏度对磨粒流加工有重要影响。数值模拟结果为磨粒流加工过程中的参数选择提供了参考依据。  相似文献   

5.
微通道换热器在解决高热流密度下的散热问题时表现出显著优势,实际工业应用通常采用集成式结构进而充分提高反应效率,但目前在反应元件集成过程中很容易发生流量分布不均进而影响换热性能,甚至出现“干蒸”以及“供液过多”的现象。因此,研究工质在平行微通道内相分配特性对于改善换热效率具有重要的指导意义。通过对通断型微通道进行结构优化,提出一种带有横向微腔的两侧加宽型微通道结构,以流动分布、传热特性、两相分配相对偏差以及压降波动来判定通断微通道相分配均匀度。研究结果显示:通断微通道进行结构优化后显著提高了相分配均匀度,各支管内气体流量相对偏差小于40%,横向微腔的设计使得相邻两个通道间充分混合,整体流动均匀效果提高了37.5%。通过对两侧通道进行加宽设计,起到了气泡过滤器的作用,减小两侧空间压力,保证通道内流型以及压力的一致性。  相似文献   

6.
提出了一种气液耦合激振方式,通过控制气路和液路交替产生的高压脉冲两相振荡流,利用其产生的激振力实现对液压系统管道内壁的污染物去除。首先,建立了高压脉冲两相流动力学模型,开发了气液脉冲两相流试验系统,利用Ansys Fluent模块进行数值模拟与仿真分析;其次,湍流模型采用k-ε二方程模型,气液两相流采用流体体积函数(volume of fluid,简称VOF)模型,用Simple算法对双流体控制方程组进行迭代求解,对气液脉冲两相振荡流的压力场、速度场及流态进行了分析;最后,采用压力变送器和数据采集卡对气液入口处不同流体压力下管道中部的混合流体激振压力进行测量,对实测压力信号进行滤波,并与数值模拟进行对比。分析表明:混合流体激振压力随着进气口和进油口流体压力的增大而增大,变化趋势与数值模拟基本吻合;在气液交替混合过程中,随着通气时间的增加,混合流体激振压力逐渐增大。数值模拟和试验研究揭示了气液脉冲两相流的动力学特性,为气液两相流激振的可控性提供了理论依据和试验基础。  相似文献   

7.
二级规则微结构对低表面能纳米通道内微流动的影响   总被引:1,自引:0,他引:1  
以低表面能纳米通道内液态Poiseuille流为对象,采用分子动力学模拟方法研究通道壁面上布置二级规则微结构后对微流动特性的影响规律。数值模拟中,统计系综为微正则系综,势能函数采用LJ/126模型,壁面定义为Rigid-atom壁面,温度校正使用速度定标法,而壁面低表面能属性则通过调整壁面铂原子与液态氩原子间的势能参数来实现。结果表明,布置二级矩形和三角形微结构后壁面附近流体密度法向分布会出现两个振荡阶段,即在微结构内部出现振幅相对较小的次级振荡过程,但通道中心区流动与光滑壁面通道相似;随微结构周期T的增大,二级微结构内密度法向振幅逐渐增大,而近壁面区域振幅则减弱;而二级微结构深度H的增大,则导致其内的次级振荡幅值减小,且分布起点随之下移。另外,随微结构周期T、深度H的增大,通道内流体平均流量均逐渐增大,即呈现更好的减阻效果。  相似文献   

8.
为了研究微通道壁面随机粗糙度对流体流动和传质特性的影响,采用随机排布准则构建具有典型粗糙元类型的随机粗糙微通道壁面,利用有限元方法分析壁面随机粗糙度对流速、压降、流动阻力和传质性能的影响,并给出粗糙微通道内部Poiseuille数和分子传质扩散的近似变化规律。结果表明,流体在粗糙微通道近壁面区域和主流区的流速差异较大,近壁面区域流动分离现象明显;与光滑微通道相比,粗糙微通道内部各位置的压降和Poiseuille数沿着流动方向呈近似线性增大趋势;微通道壁面粗糙度的存在可以强化流体分子的传质扩散速率,但受粗糙度类型和相对粗糙度的影响较大。  相似文献   

9.
叶片式混输泵入口段气液两相流场可视化试验   总被引:1,自引:0,他引:1  
气液两相混合流体在叶片式混输泵内的流动与入口段气液混合程度有直接的关系,故在混输泵入口前端设置了自行设计的缓冲均化器,并通过可视化试验探索入口段气液两相流型及气泡直径随转速和入口含气率的变化规律。研究发现:经过缓冲均化器后,气液两相流体在混输泵入口段表现为均匀的泡状流,无大团气泡聚集现象,说明缓冲均化器结构及多孔管开孔方案合理,能够起到均匀混合气液两相流体的作用;在同一转速和液相流量下,混输泵入口段气泡直径变化规律呈正态分布,随着入口含气率的增加(0~50%),气体总流量增加,在均化器中与水混合后形成的气泡初始直径逐渐增加,使得混输泵入口段气泡直径也逐渐增加;在同一液相流量和入口含气率工况下,气泡的初始直径相同,而随着混输泵转速的增加(1 800~2 700 r/min),入口段流体旋转角速度增大,导致液相对气相的拖曳力也相应增大,最终导致气泡直径变小;绘制了泵入口气泡直径随入口含气率及转速的变化规律曲线,可以为混输泵内流场数值模拟中入口气液两相流型及平均气泡直径的设置提供参考。  相似文献   

10.
利用追踪运动界面的两相流模型数值研究对流Y型微通道中两相界面形貌变化特性。发现对流Y型微通道Y型角度、连续相毛细数、两相流量对液滴生成时间、速度、大小有重要影响。其中连续相毛细数与Y型角度越小,所生成的液滴体积越大,而随着分散相与连续相流量比例的增大,其对液滴体积的影响变小,但流量比不能无限增大或减小,当比值大于0.5或小于0.05时,此时分散相只能以液柱或液丝的形式出现,无法产生液滴;当分散相流量越大,相应液滴的生成速度也几乎成比例增大,且分散相流量的变化对液滴长度的演变过程有更大的影响。此外随Y型角度的增加,液滴在形成过程中,填充时间变长,缩颈时间变短,液滴脱离机理主要是因为来自连续相正应力的作用。  相似文献   

11.
根据驱动原理将非接触式微流体分配技术分为间接驱动和直接驱动。现有技术采用间接驱动原理,通过驱动介质与静止流体的动能交换实现流体的运动,完成分配过程。新技术采用直接驱动原理,根据气液两相流理论,将气体和液体射流同时引入混合腔,在一定的气液流速比范围内,气体和液体射流自发在混合腔内形成气液两相断塞流,可获得均匀间隔、流型稳定的液滴和气泡,气液两相均具有体积一致的特点,可实现不同黏度液体的高频率、微体积的精确分配。  相似文献   

12.
液气射流泵扩散管内气泡尺寸的试验研究   总被引:1,自引:0,他引:1  
在工作水压力小于500kPa的低压水射流情况下,通过取样法和摄像法试验研究了下喷式液气射流泵扩散管内部气泡直径范围,获得内部气液两相流动情况及气泡分布特性。在一定的孔口雷诺数下,不同气液比下扩散管中气泡直径范围约80%集中在0.6~1.3mm。测量不同孔口雷诺数下的气泡直径,在孔口雷诺数较小的情况下气泡直径变化明显,最大直径可以达到3mm左右。由试验结果可以看出,气液比的变化相对于工作压力的改变对气泡尺寸影响比较明显。液气射流泵作为气液接触、射流混合及反应的设备,用于气体的吸收和分离操作。其含气率和气泡分布以及相接触面积是内部射流混合的重要参数。研究结论和结果有利于进一步提高气液两相混合效果。  相似文献   

13.
气液固三相湍流环境中气泡破裂对SiC颗粒的影响研究   总被引:2,自引:0,他引:2  
为解决气液固三相磨粒流抛光加工中气泡破裂对Si C颗粒运动的可控性研究等问题,研究了气液固三相流中近壁面微纳米气泡破裂对周围流场和颗粒的影响,采用Fluent软件中多相流体体积模型与可实现k-ε湍流模型,建立了气液固三相颗粒流气泡破裂动力学模型,得到了气泡破裂对壁面和颗粒的作用规律。利用流场中气泡破裂产生的高速射流对周围颗粒的扰动作用,提高了颗粒切削工件表面动能。研究结果表明:气泡初始直径越小或气泡与颗粒之间的距离越小,都使气泡破裂所产生的局部射流对周围颗粒的影响越大;可为流体精密加工、空蚀、气泡可控性研究提供参考。  相似文献   

14.
建立了汽车液压制动系统中气液两相流流型检测装置,根据压差波动信号,利用Hilbert-Huang变换(HHT)对制动液两相流流型进行识别,并利用高速摄像机采集不同工况下制动液的气液两相流流型图像。结果表明,制动时车轮转速越高,压差信号幅值越大,幅值主要集中在0~50Hz区域;识别制动时的制动液流型为一种泡状流。高速摄影的结果验证了液压制动管路中制动液为泡状流;制动转速越高,气泡越小。结论揭示了制动时汽车制动液的气液两相流流型,说明利用测量制动液的压差波动信号进行HHT就可以识别其流型。  相似文献   

15.
核电站热水生产及分配系统特定温度下压力波动问题研究   总被引:1,自引:0,他引:1  
针对某核电站热水生产及分配系统特定温度下热水泵出口压力波动问题,对该系统热水泵有效汽蚀余量进行了计算,将结果与理论值进行了对比,现场测量了水泵振动数值,并与国标进行了对比;结合气液两相流理论研究了现场管道布置,对系统介质在不同温度下空气溶解度进行了分析,配合流速计算确定了在系统管道流速较低的高点增加排气阀。研究结果表明,压力波动是由气液两相流型转化产生,空气在不同水温下的溶解度变化导致了该现象仅在特定温度下出现,通过在适当位置增加排气阀可以解决该问题。  相似文献   

16.
相比于普通的U型和Δ型科氏质量流量计,微弯型科氏质量流量计具有更高的频率和更小的相位差,测量气-液两相流时误差更大。为了揭示气液两相流测量误差的特性,针对微弯型科氏质量流量传感器输出信号的实验数据,采用数字过零检测方法提取流量序列。用概率密度分析流量序列的分布规律,再通过相关分析得到流量序列的数学模型,并验证模型的准确性。该数学模型由稳定分量和波动分量组成。稳定分量对应于气液两相流下流量实际测量的均值,其与真实值之间的偏差反映了气液两相流的测量误差;波动分量反映了瞬时流量测量的稳定性。  相似文献   

17.
随着科技的发展,微电子设备的散热量越来越大,传统换热器将难以满足其散热需求。微通道散热是一种新型的高效换热技术,其结构紧凑、换热性能突出、运行安全可靠的特点引起国内外学术界和工业界的广泛关注。试验技术存在对换热装置加工工艺和测量仪器精度的高要求,成本高、准备周期长;数值模拟技术成本低、计算周期短,探索微通道内单相和气液两相流动换热特性更为便捷,其优势也日益突显。详细介绍了针对微通道换热器的传热流动数值模拟研究方法,对比分析了包含LBM模拟方法和VOF气液两相流模型在内的典型数值方法,并总结了数值模拟在微通道单相换热特性、气液两相换热特性和临界热流密度方面的研究进展。  相似文献   

18.
螺旋轴流式多相流泵适用于输送气液两相流介质,由于两相介质的密度不同,运动轨迹也不相同,气体以气泡的形式流动,在流动过程中大小和形态的转变可直观反映泵内流体参数的变化,通过设计试验系统观测以及数值模拟的两种方式结合对气泡轨迹进行研究。结果表明:在转速低于1200 r/min时,气泡在叶轮叶片骨线1/2处体积达到最大,与压力面接触破碎向吸力面运动,在导叶内气泡自身能量不足开始逆压力梯度回流,两相流通流情况差;转速高于1450 r/min时,叶轮内气泡数量增多、尺寸减小,开始出现叶顶间隙回流且强度不断增加,跨流道运动强度也逐渐增加,在叶顶间隙有明显的气泡冲撞并有叶顶间隙涡的形成,导叶内气泡的气泡跨流道运动导致在其出口尾缘出现气体涡旋,随转速的增加所占流道面积增大,阻碍两相流通流。  相似文献   

19.
微细气泡因其具有尺寸小、上升速度慢和传质效率高等特点,在污水处理、超声成像和皮肤清洁等领域具有可观的潜在应用价值。以微流控方法生成微细气泡为研究对象,针对T形微流道中气、液二相流体相互作用机制,开展基于COMSOL的微细气泡生成特性数值模拟研究,观测不同时刻下的微细气泡的形态特征,分析气体压强、液体流量、气体通道宽度、混合界面润湿性等因素对微细气泡生成特性的影响规律,并研制T形微流控芯片,通过微细气泡生成特性测试系统开展试验验证,为微细气泡定量精准可控生成提供仿真与试验依据。  相似文献   

20.
固液两相离心泵内部非定常流动特性研究   总被引:1,自引:0,他引:1  
项佳梁  李昳  唐华 《机电工程》2014,(6):702-706
为研究固液两相流离心泵内部的非定常流动特性,基于滑移网格方法,采用RNGκ-ε湍流模型以及ASMM代数滑移混合物模型,对一台高比转速固液两相离心泵内部流场进行非定常流动的数值模拟,通过分析清水工况数值计算结果、外特性性能实验结果以及固液两相流非定常数值计算结果,获得了非定常条件下固液两相输送离心泵的瞬时外特性曲线和内部流动及磨损规律。研究结果表明:在一个转动周期内,离心泵的扬程、效率和轴功率均呈现正弦波动特征;动静干涉效应使得叶轮出口处的速度和静压分布均呈现周期性波动;模型泵叶轮前后盖板的磨损情况比蜗壳壁面的磨损严重。上述计算结果可为实现高比转速固液两相流离心泵的优化水力设计和减轻磨损提供一定的理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号