首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
为了分析弹性车体结构振动特性及对曲线通过能力的影响,用运多体动力学建模仿真软件SIMPACK分别建立某型动车组刚性动力学仿真模型和柔性车体与刚性走行部耦合动力学仿真模型,通过对两种模型的垂向和横向动力学动态响应进行比较和分析。结果表明,刚柔耦合模型车体振动加速度均方值(RMS)和Sperling指标均较多刚体模型大,曲线通过能力减小。  相似文献   

2.
基于刚柔耦合动力学理论并采用UM与HYPERMESH、ANSYS建立基于弹性车体的地铁头车刚柔耦合模型,研究将车体考虑成弹性时地铁车辆动力学特性。结果表明:随着速度的提高,平稳性指标和舒适性指标都增大,脱轨系数最大值先减小后增大,轮轨横向力最大值先减小后增大,轮轨垂向力最大值逐渐增大,车轮磨耗功最大值逐渐减小,在速度低于100 km/h时,轮重减载率最大值先增大后减小,之后逐渐增大,各项动力学指标均满足国家相关标准;与刚体动力学模型计算相比,采用刚柔耦合模型计算时考虑了车体的弹性变形,且两者计算结果个别差异较大,建议在计算地铁车辆动力学性能时将车体进行弹性化处理。  相似文献   

3.
铸铝横梁是某型高速列车体悬式牵引电机的承载结构,其铝合金铸造结构复杂,同时承载来自车体弹性振动和电机转矩的多源载荷。在实际运营条件下结构的应力状态分析是预测、监控结构承载安全不可忽视的环节。建立车体-铸铝横梁结构耦合动力学模型,以哈大线实际线路工况为条件进行仿真,对比分析基于刚柔耦合模型和多刚体模型的车体加速度响应:刚体模型仅能表征低频下车体的刚体振型,随线路激扰加剧,刚柔耦合模型中弹性体模态被激发,模态响应阶次提高,振动能量增大;将由车体动力学响应计算获得的时域载荷作用于经动载试验校验的铸铝横梁有限元模型,实现瞬态应力状态分析。结果表明:铸铝横梁载荷与车体振动呈正相关性,车体一阶垂向振动、电机转矩和车体菱形变形振动分别是引起多线路条件下垂向载荷、横向载荷加剧的主要因素;在现有模型条件下,结构典型高应力区域最大主应力变动方向角小于5°,呈准单轴应力状态。  相似文献   

4.
基于柔性多体系统动力学理论研究铁道集装箱平车动态响应。建立考虑车体弹性的刚柔耦合车辆系统动力学模型,并与多刚体模型的动态响应进行对比。仿真结果表明:弹性体模型的车体加速度均方根值(RMS)较刚性体模型大,最大差值为2.8 m/s2;频谱分析显示,车体1阶扭曲、1阶垂向弯曲和1阶横向弯曲模态对空车振动响应影响显著;加装集装箱会改变车体模态振型,主要表现为扭转弹性变形和局部的弹性振动,对车体端部垂向振动响应影响显著。  相似文献   

5.
车轮扁疤所诱发的轮对弹性变形会导致车辆系统部件振动加速度增大,但目前相关研究主要采取刚体动力学模型。为更准确研究车轮扁疤对高速车辆振动特性的影响,在目前成熟且广泛已知的车辆-轨道耦合模型和车辆系统刚柔耦合模型的基础上,综合考虑车辆主要部件的弹性振动和轨道弹性振动的影响,建立改进的车辆-轨道动力学模型。结果表明,在扁疤作用下,轮对弹性变形对轮轨垂向力影响甚微,但对轴箱端盖垂向振动响应影响很大;扁疤所产生的冲击载荷经过转向架或者钢轨的传递作用,会导致同轴另一侧以及转向架同侧处的轮轨力产生小幅值波动;扁疤所在轮对的左右两个轴箱端盖振动加速度要远大于同一转向架的其他两处;在低速时,车轮扁疤对构架端部垂向振动加速度也有着不可忽视的影响。提出的研究成果揭示了车轮扁疤作用下车辆-轨道系统弹性变形的重要性,对车轮状态监控也具有重要意义。  相似文献   

6.
为探明齿轮的弹性变形对动力稳定装置动力学性能的影响,把齿轮看作柔性体进行仿真分析。通过对比稳定装置的刚柔耦合系统与多刚体系统的驱动轴旋转角速度和轮轨接触力,来确定齿轮的弹性变形对稳定装置的动力学特性的影响,得出将齿轮考虑为柔性体时更接近实际工况的结论。比较3个激振频率时轮轨间接触力,确定了轮轨接触力与激振频率并非正相关。  相似文献   

7.
针对车轮多边形磨耗不同状态下对车辆动力学影响展开研究,建立轮轨柔性某地铁B型车辆刚柔耦合动力学模型,计算车轮多边形阶数和谐波幅值变化对轮轨垂向力、轮轨振动、运行平稳性等车辆动力学性能的影响。结果表明:阶数和谐波幅值在速度增大时轮轨垂向力逐渐增大;阶数14阶、18阶是轮对和轴箱振动加速度随谐波幅值变化产生振动的主要诱因;动力学指标中轮重减载率在18阶、0.04 mm时对其影响最大;车轮多边形使钢轨垂向动位移和振动加速度增大,谐波幅值对钢轨振动特性更有影响。建议考虑制造轮轨柔性,18阶、0.04 mm时对轮轨璇修打磨,以提高动力学性能和行车安全性。  相似文献   

8.
基于多体动力学软件UM建立了CRH2型车的多刚体模型,并将构架考虑成柔性体替换多刚体模型的刚体构架,建立CRH2型车的刚柔耦合模型。分析了车辆在通过曲线时多刚体动力学模型和刚柔耦合动力学模型的动态特性。计算了车辆在不同曲线半径、不同曲线超高、不同长度缓和曲线下多刚体模型和刚柔耦合模型各项安全性指标的差异。仿真表明,一定程度增大曲线半径、提高曲线超高、增加曲线长度有利于提高曲线通过的安全性,并且刚柔耦合模型比多刚体模型有更好的曲线通过性能,建议分析曲线通过性能时考虑构架柔性因素。  相似文献   

9.
首先基于刚柔耦合理论,考虑了轮对、轴箱和构架的柔性,建立了动车组车辆刚柔耦合动力学模型;然后又通过模态叠加法建立了轨道的动力学模型,从而发展成车线-刚柔耦合动力学模型。随后,在车轮上施加20阶理想多边形,研究了300 km/h下轴箱垂向加速度、轮轨垂向力和轮轴弯曲应力的响应,结果表明:轴箱垂向加速度和轮轨垂向力以577 Hz的多边形通过频率波动,而轮轴弯曲应力主频为28.8Hz的车轮转频,在此基础上,叠加了多边形的通过频率,因此多边形的通过频率577 Hz会分岔为548 Hz和605 Hz两个频率。通过对不同速度和不同多边形幅值下车辆响应的研究可以得到以下结论:随着速度和多边形幅值的增大,轮轨力最大值总体上呈现增大趋势。从轮轨力最小值上看:速度越大,多边形幅值越大,则更容易发生轮轨分离。当车轮多边形通过频率与轮轨耦合共振频率耦合,会引起轮轨垂向力的增大。当与轴箱自身模态频率耦合时会导致轴箱加速度的变大。轮轴应力则主要受到轮轨耦合共振模态以及轮轴自身的弯曲模态影响。  相似文献   

10.
针对高速列车车体结构等效载荷与结构模态之间的强耦合特性使车体在运行过程中产生弹性振动,影响客车运行平稳性问题,基于柔刚耦合动力学原理,建立了客车垂向动力学模型,计算了系统响应功率谱,分析了车辆悬挂参数和运行参数对振动的影响。仿真发现弹性车体振动响应大于刚性车体,车体1阶垂弯振动对弹性振动的贡献最大,速度越高,对1阶垂弯频率要求越高,提高车体结构阻尼和1系垂向阻尼、适当降低2系垂向阻尼可提高车体垂向运行平稳性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号