首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了测量脉冲激光沉积法制备的小面积薄膜的残余应力,并解决Stoney公式在特定情况下误差较大的问题,本文提出了一种基于悬臂梁结构和数值计算的薄膜残余应力测量方法。该方法以初始曲率为零的原子力显微镜探针作为衬底梁,在衬底梁上使用脉冲激光沉积方法沉积被测薄膜,并记录衬底梁在薄膜沉积前后的翘曲形貌变化,再结合薄膜厚度、衬底梁几何尺寸、所涉及材料的杨氏模量与泊松比等其他参数,借助数值计算对实验数据进行分析,得出被测薄膜的残余应力。使用该方法测出:基于脉冲激光沉积法在高温环境下制备的二氧化钒薄膜的残余应力为-340 MPa,与文献报道的结果相符。本文提出的基于悬臂梁结构和数值计算的薄膜残余应力测量方法具有适用范围广、准确度好、实验成本低的优点。  相似文献   

2.
The direct diode laser application has been found useful in the localized heat treatment of metal parts because of its wider beam and more uniform energy distribution with respect to other lasers with Gaussian-like energy distribution. In this study, an uncoupled thermomechanical finite element model is developed to study the temperature field and thermally induced stress evolution in high-strength dual phase (DP) 980 steel during its direct diode laser heat treatment. Thermal analysis results are experimentally validated through thermocouples and then input into a mechanical model as transient temperature loading in order to acquire the thermally induced stresses and strains. The effect of martensite phase transformation on residual stress distribution in heat-treated DP980 steel is considered. An X-ray diffraction technique is used to measure the residual stress distribution at the top surface of the heat-treated coupons of DP980 steel. The numerical results show that compressive stresses are located at the laser–material interaction zone. After heat treatment, tensile stresses are retained at the heat-treated DP980 steel coupons. There is qualitative agreement between the numerically predicted and experimentally measured residual stresses. The effect of the overlapping ratio on the residual stress and hardness of the heat-treated DP980 steel is also experimentally and numerically investigated.  相似文献   

3.
组合圆管激光束钎焊过程的数值模拟   总被引:1,自引:0,他引:1  
董平 《机械工程材料》2004,28(9):16-18,38
组合圆管外层为铍管,内层为钨管.二者通过过盈配合形成。采用MARC软件对组合圆管激光束钎焊过程进行了数值模拟,得到组合圆管钎焊过程的应力场及焊接后的残余应力分布,进一步研究了过盈量对组合圆管焊接残余应力分布的影响,并采用X射线法对组合圆管外表面的焊接残余应力分布进行测试。焊接残余应力有限元计算值与实测值的变化趋势基本一致,验证了有限元模型。  相似文献   

4.
针对激光熔覆过程中剧烈的温度场变化伴随着应力、应变演化,进而导致零件具有高裂纹敏感性的问题,对不同激光扫描路径及工艺参数下残余应力演变规律进行研究。采用激光熔覆在Q345钢上制备了Fe基双层多道涂层,并以X射线衍射法结合电化学腐蚀剥层法测量沿涂层深度方向的残余应力分布,探究激光扫描路径、功率以及扫描速度对涂层显微组织和应力分布的影响。结果表明:涂层表面和内部为残余压应力,在涂层基体熔合线处残余应力发生突变,热影响区表现为残余拉应力;激光熔覆工艺对涂层残余应力的大小和分布规律有显著影响,当激光扫描路径为轮廓偏置式、激光功率为1.8 kW、扫描速度为0.02 m/s时,涂层具有最优的残余应力分布和成形质量;残余应力的产生主要与激光束对熔池的冲击作用以及熔覆层的非平衡凝固特性有关。  相似文献   

5.
基于相位-频率测量的材料残余应力超声表征方法*   总被引:3,自引:0,他引:3  
针对材料中残余应力无损检测的问题,提出一种基于相位-频率关系测量超声信号传播时间的方法,并以声弹性理论为基础,采用纵波和横波相结合的测量模式,建立残余应力的超声测量方法。该超声测量方法应用于焊接接头的残余应力测量,不仅能够表征两轴方向上的残余应力,而且还适用于短距离声时的精确测量,测量精度达到9 mm试样距离上0.3 ns的分辨率(加载应力为20 MPa)。制作16Mn钢材料的焊接接头,并采用所提出的超声测量方法对焊接接头的残余应力分布进行测量。同时,采用理论计算、X射线衍射技术等分别对16Mn钢材料的声弹性参数及焊接接头残余应力分布进行验证测量。研究结果表明基于相位-频率精确测量声时的残余应力超声测量方法具有较高的应力分辨率和较好的测量稳定性,可适用于焊接接头两轴方向上的残余应力表征。  相似文献   

6.
Laser-shock-wave processing (LSWP) of materials is an innovative material processing technology in which considerable compressive residual stresses are generated in the surface region and contribute to improved strength and performance parameters. We analyze performance capabilities of lasers operating at higher frequencies and lower energy levels compared to lasers used with traditional LSWP technologies. Finite element modeling of compressive residual stresses at different stages of laser spot overlap for BT-6 titanium alloys is carried out. The results are compared with the known experimental data. It is shown that they are correlate well with each other.  相似文献   

7.
钢和铸铁激光相变硬化层的残余应力研究   总被引:6,自引:0,他引:6  
对钢和铸铁中激光相变硬化引起的残余应力现象进行了研究。结果表明,激光相变硬化层中的残余压应力是普遍存在的现象。激光能量密度P/D_b~v对残余应力的大小有很大影响,且对具有不同原始组织的材料,影响的规律也不同。推导了激光相变硬化层的残余应力公式,并对实验结果进行了分析讨论。  相似文献   

8.
压力容器断裂韧度要求的预测   总被引:3,自引:0,他引:3  
在弹塑性断裂双参数分析方法的基础上,导出了预测压力容器等重要工程结构断裂韧度CTOD要求的理论表达式。只要在实际结构服役条件下,材料断裂韧度高于该表达式要求的韧度值,就可防止结构的弹塑性断裂失效。同时,在该表达式中考虑了应力集中及焊接残余应力的影响,并表明断裂韧度要求随作用应力及板厚的增加而增加。最后给出了两个实例,以考核该理论表达式的实用性。  相似文献   

9.

This paper presents an efficient method for stress measurement propagation. Pulse-echo method are used as stress measurement method on railway wheels. Hard service conditions and brake failures can lead to dangerous stress on the railway wheels. Stress measurements so important for wheels. Especially wheel expose to severe drag braking conditions in freight service. Residual stresses can significantly reduce the engineering properties and fatigue life of materials such as railway components. The paper presents results of stress state investigation of ER7 steel. Finally, the article briefly discusses how to adopt the pulse-echo method to railway wheels. Reducing cost of residual stress measurement investigated.

  相似文献   

10.
Fracture toughness is one of the most important mechanical properties for sheet metal in many applications. However not enough attention has been paid to the effects of laser forming conditions on fracture toughness of sheet metal. This paper presents an integrated fracture toughness model to study fracture toughness of sheet metal after laser forming. Microstructure, distribution of residual stresses and geometry of sheet metal specimen are considered in the model. Results of residual stress from microstructure-integrated finite element modelling of laser forming are incorporated in the model. Low carbon steel is used in this paper to validate the model. The results from the fracture toughness study are found to be consistent with microstructure analysis .  相似文献   

11.
Laser peening (LP) induces high-magnitude compressive residual stresses in a small region of a component. The compressive residual stresses cause plastic deformation that is resistant to fatigue fracture. Fatigue cracks are generally nucleated at critical areas, and LP is applied for those regions so as to delay the crack initiation. Many critical regions are located on the edge of the curved portion of structures because of stress concentration effects. Several investigations that are available for straight components may not give meaningful guidelines for peening curved components. Therefore, in this paper, we investigate residual stress behaviors induced by LP along the edge of curved models. Three curved models that have different curvatures are investigated for peening performance. Two types of peening configurations, which are simultaneous corner shot and sequential corner shots, are considered in order to obtain compressive residual stresses along an edge. LP simulations of multiple shots are performed to identify overlapping effects on the edge portion of a curved model. In addition, the uncertainty calculation of residual stress induced by LP considering laser pulse duration is performed.  相似文献   

12.
基于电子散斑干涉原理搭建了测量试验平台,通过数字图像处理,得到电子散斑干涉条纹图像,实现了对一维微变形场的测量,对比测量结果与仿真结果,验证了该测量方法的可行性。结合盲孔法测量残余应力的原理,用电子散斑干涉装置取代盲孔法中的应变花来测量因钻孔产生的变形,并由此解残余应力。试验结果表明,基于电子散斑干涉技术的盲孔法残余应力测量系统简单,可行,高效,具有很大的工程应用价值。  相似文献   

13.
Residual stresses induced by machining coupled with the initial stresses can significantly impact mechanical properties of workpieces such as distortion, corrosion resistance, and dimensional stability. The redistribution pattern of residual stresses is extremely complex. The stress relieving can seriously deform the workpieces and reduce the fatigue life. Therefore, deflection prediction is critical for design, control, analysis, and management of machining. In this paper, an integrated modeling method is introduced to predict the deflection caused by milling residual stresses, to be more exact, to map the relationship between the deflections and the cutting parameters. Response surface design (RSD) is utilized to develop a new mathematical model which can predict the residual stress profiles of the workpieces along the cutting direction based on different cutting parameters. Then, the deflections are derived based on the estimated stress profiles and mechanics of materials theory. A finite element analysis model (FEM)-based simulation experiment using aluminum alloy 6061 as a case study has been implemented. The results from experiments indicate that the proposed approach could precisely estimate the residual stress profiles for given cutting parameters and effectively predict the deflections of the workpieces caused by residual stress.  相似文献   

14.
In this paper, a modified through hole-drilling method is developed to evaluate the effectiveness of the application of vibratory stress relief (VSR). The principal residual stresses at any specified point before and after the treatment of VSR are measured by this method with the same cemented commercially available three-element strain gauge rosette. By comparing the magnitude of the measured results, the effectiveness of the treatment of VSR can thus be determined. Thin butt-welded specimens are prepared to verify the accuracy of the modified hole-drilling method compared to that of the conventional hole-drilling method. The experimental results show that the percentages of the relative errors between these two methods are all within 2.9%. Therefore, this modified method shows good accuracy in the determination of residual stresses before and after VSR. Meanwhile, the maximum principal residual stresses at the measured points are effectively reduced by about 5.8% to 27% after the application of VSR, and the minimum principal residual stresses at the measured points are effectively reduced by about 9.6% to 31%.  相似文献   

15.
《Wear》2006,260(7-8):847-854
Laser shock processing (LSP) is becoming an important surface treatment to induce a compressive residual stress field, which improves fatigue and fracture properties of components. In this work, we examine the effect of laser shock processing on the wear and friction behavior of 6061-T6 aluminum alloy. Wear rate and friction coefficient evolution are investigated for different process parameters of LSP. Roll-on-flat tribometer is used with different loading conditions. Hardness and residual stresses are assessed as well. It is observed that wear rate decreases as pulse density increases; this is explained in light of residual stress distribution.  相似文献   

16.
Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature field, but few literatures focus on wheel-rail thermal stress caused by frictional heating. However, the wheel-rail creepage is one of important influencing factors of the thermal stress In this paper, a thermo-mechanical coupling model of wheel-rail rolling-sliding contact is developed using thermo-elasto-plastic finite element method. The effect of the wheel-rail elastic creepage on the distribution of heat flux is investigated using the numerical model in which the temperature-dependent material properties are taken into consideration. The moving wheel-rail contact force and the frictional heating are used to simulate the wheel rolling on the rail. The effect of the creepage on the temperature rise, thermal strain, residual stress and residual strain under wheel-rail sliding-rolling contact are investigated. The investigation results show that the thermally affected zone exists mainly in a very thin layer of material near the rail contact surface during the rolling-sliding contact. Both the temperature and thermal strain of rail increase with increasing creepage. The residual stresses induced by the frictional heat in the surface layer of rail appear to be tensile. When the creepage is large, the frictional heat has a significant influence on the residual stresses and residual strains of rail. This paper develops a thermo-meehanical coupling model of wheel-rail rolling-sliding contact, and the obtained results can help to understand the mechanism of wheel/rail frictional thermal fatigue.  相似文献   

17.
Numerical prediction of welding-induced residual stresses using the finite element method has been a common practice in the development or refinement of welded product designs. Various researchers have studied several thermal models associated with the welding process. Among these thermal models, ramp heat input and double-ellipsoid moving source have been investigated. These heat-source models predict the temperature fields and history with or without accuracy. However, these models can predict the thermal characteristics of the welding process that influence the formation of the inherent plastic strains, which ultimately determines the final state of residual stresses in the weldment. The magnitude and distribution of residual stresses are compared. Although the two models predict similar magnitude of the longitudinal stress, the double-ellipsoid moving source model predicts wider tensile stress zones than the other one. And, both the ramp heating and moving source models predict the stress results in reasonable agreement with the experimental data.  相似文献   

18.
基于轮廓法测试焊接件内部残余应力   总被引:3,自引:0,他引:3  
采用轮廓法测试低碳钢堆焊件和T形焊接结构的内部纵向残余应力。将焊接件沿垂直焊缝平面切割开,精确测试切割面的变形轮廓,然后将测试轮廓进行拟合,并将拟合结果作为有限元模型的边界条件进行弹性计算从而获得内部垂直切割平面的应力分布。比较不同曲面拟合方法拟合得到的切割面轮廓形貌;将轮廓法测试的焊接残余应力结果和热弹塑性三维有限元计算结果进行比较分析。研究结果表明:轮廓法能准确高效测试较厚焊接件内部整个截面上的纵向应力分布;由于线切割和轮廓测量误差造成轮廓法测得的应力在约2 mm厚表层区域的幅值和有限元计算结果相比误差较大,但轮廓法测试结果仍能反映出表层应力的分布趋势和特征;线切割断丝造成切割面的局部轮廓误差,会引起断丝区域测试应力出现突变。  相似文献   

19.
By using finite element analysis, we proposed an applicable finite element method of laser shock peening (LSP) and discussed various parameters, such as solution time, stability limit, dynamic yield stress, peak pressure, pressure pulse duration, laser spot size, and multiple LSP. The effects of parameters related to the finite element simulation of the LSP process on the residual stresses of 35CD4 30HRC steel alloy are discussed. Parametric sensitivity analyses were performed to establish the optimum processing variables of the LSP process. In addition, we evaluated the effects of initial residual stress, such as welding-induced residual stress field.  相似文献   

20.
It has been proposed that highly triaxial residual stress fields may be sufficient to promote creep damage in thermally aged components, even in the absence of in-service loads. To test this proposal, it is necessary to create test specimens containing highly triaxial residual stress fields over a significant volume of the specimen. This paper presents results from an experimental and numerical study on the generation of triaxial residual stresses in stainless steel test specimens. Spray water quenching was used to generate residual stress fields in solid cylinders and spheres made from type 316H stainless steel. A series of finite element simulations and measurements were carried out to determine how process conditions and specimen dimensions influenced the resulting residual stress distributions. The results showed that highly compressive residual stresses occurred around the surfaces of the cylinders and spheres and tensile residual stresses occurred near the centre. Surface residual stresses were measured using the incremental centre hole-drilling technique, while internal residual stresses were measured using neutron diffraction. Overall there was good agreement between the predicted and measured residual stresses. The level of triaxiality was found to be very sensitive to the heat transfer coefficient, and could be controlled by adjusting the cooling conditions and changing the dimensions of the steel samples. This differed from other processes, such as welding and shot-peening, where the magnitudes and distributions of residual stresses are ill-defined and the volume of material subjected to a triaxial residual stress state is relatively small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号